Taylor series of trigonometric functions

Calculus Level 4

S ( x ) = 2 n = 0 ( 1 ) n ( n + 1 ) x 2 n + 1 ( 2 n + 1 ) ! S(x)=2\sum_{n=0}^\infty \frac{(-1)^{n}(n+1)x^{2n+1}}{(2n+1)!}

For S ( x ) S(x) as defined above, evaluate S ( 1 ) S(1) to 2 decimal places.


The answer is 1.38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Jun 15, 2017

From Maclaurin series of sin ( x ) \sin(x) :

sin ( x ) = n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \large \displaystyle \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}

Dividing by x x on both sides:

sin ( x ) x = n = 0 ( 1 ) n x 2 n ( 2 n + 1 ) ! \large \displaystyle \frac{\sin(x)}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}

Differentiating with respect to x x on both sides:

x cos ( x ) sin ( x ) x 2 = 2 n = 0 ( 1 ) n n x 2 n 1 ( 2 n + 1 ) ! \large \displaystyle \frac{x\cos(x) - \sin(x)}{x^2} = 2\sum_{n=0}^{\infty} \frac{(-1)^n n x^{2n-1}}{(2n+1)!}

Multiplying by x 2 x^2 on both sides:

x cos ( x ) sin ( x ) = 2 n = 0 ( 1 ) n n x 2 n + 1 ( 2 n + 1 ) ! \large \displaystyle x\cos(x) - \sin(x) = 2\sum_{n=0}^{\infty} \frac{(-1)^n n x^{2n+1}}{(2n+1)!}

x cos ( x ) sin ( x ) = 2 [ n = 0 ( 1 ) n n x 2 n + 1 ( 2 n + 1 ) ! + n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! ] \large \displaystyle x\cos(x) - \sin(x) = 2 \left [ \sum_{n=0}^{\infty} \frac{(-1)^n n x^{2n+1}}{(2n+1)!} \color{#20A900} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} - \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \right ]

x cos ( x ) sin ( x ) = 2 [ n = 0 ( 1 ) n ( n + 1 ) x 2 n + 1 ( 2 n + 1 ) ! sin ( x ) ] \large \displaystyle x\cos(x) - \sin(x) = 2 \left [ \sum_{n=0}^{\infty} \frac{(-1)^n (n+1) x^{2n+1}}{(2n+1)!} - \sin(x) \right ]

x cos ( x ) + sin ( x ) = 2 n = 0 ( 1 ) n ( n + 1 ) x 2 n + 1 ( 2 n + 1 ) ! \large \displaystyle x\cos(x) + \sin(x) = 2 \ \sum_{n=0}^{\infty} \frac{(-1)^n (n+1) x^{2n+1}}{(2n+1)!}

S ( x ) = x cos ( x ) + sin ( x ) \color{#20A900} \boxed{\large \displaystyle S(x) = x\cos(x) + \sin(x) }

So:

S ( 1 ) = cos ( 1 ) + sin ( 1 ) 1.38 \color{#3D99F6} \boxed{\large \displaystyle S(1) = \cos(1) + \sin(1) \approx 1.38 }

Wow! Great solution.

maximos stratis - 3 years, 12 months ago

Log in to reply

Thank you, sir!

Guilherme Niedu - 3 years, 12 months ago
Zach Abueg
Jun 15, 2017

S ( x ) = 2 n = 0 ( 1 ) n ( n + 1 ) x 2 n + 1 ( 2 n + 1 ) ! c a n = c a n for convergent series = n = 0 ( 1 ) n ( 2 n + 2 ) x 2 n + 1 ( 2 n + 1 ) ! = n = 0 ( 1 ) n [ ( ( 2 n + 1 ) + 1 ) x 2 n + 1 ] ( 2 n + 1 ) ! Distribute = n = 0 ( 1 ) n ( 2 n + 1 ) x 2 n + 1 ( 2 n + 1 ) ! + n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! 2 n + 1 ( 2 n + 1 ) ! = 1 ( 2 n ) ! = n = 0 ( 1 ) n x 2 n + 1 ( 2 n ) ! + n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! x 2 n + 1 = x x 2 n = n = 0 x ( 1 ) n x 2 n ( 2 n ) ! + n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x cos x + sin x S ( 1 ) = cos ( 1 ) + sin ( 1 ) \displaystyle \begin{aligned} S(x) & = {\color{#20A900}{2}}\sum_{n \ = \ 0}^{\infty} \frac{(- 1)^n(n + 1)x^{2n + 1}}{(2n + 1)!} & \small \color{#3D99F6} c\sum a_n = \sum c \cdot a_n \ \text{for convergent series} \\ & = \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^n({\color{#20A900}{2n + 2}})x^{2n + 1}}{(2n + 1)!} \\ & = \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^n\Bigg[\bigg((2n + 1) + 1\bigg)x^{2n + 1}\Bigg]}{(2n + 1)!} & \small \color{#3D99F6} \text{Distribute} \\ & = \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^n({\color{#D61F06}{2n + 1}})x^{2n + 1}}{({\color{#D61F06}{2n + 1}})!} + \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^nx^{2n + 1}}{(2n + 1)!} & \small \color{#3D99F6} \frac{2n + 1}{(2n + 1)!} = \frac{1}{(2n)!} \\ & = \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^nx^{2n + 1}}{(2n)!} + \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^nx^{2n + 1}}{(2n + 1)!} & \small \color{#3D99F6} x^{2n + 1} = x \cdot x^{2n} \\ & = \sum_{n \ = \ 0}^{\infty} x\frac{(- 1)^nx^{2n}}{(2n)!} + \sum_{n \ = \ 0}^{\infty} \frac{(- 1)^nx^{2n + 1}}{(2n + 1)!} \\ & = x\cos x + \sin x \\ S(1) & = \cos (1) + \sin (1) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...