S ( x ) = 2 ∑ n = 0 ∞ ( 2 n + 1 ) ! ( − 1 ) n ( n + 1 ) x 2 n + 1
For S ( x ) as defined above, evaluate S ( 1 ) to 2 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow! Great solution.
S ( x ) S ( 1 ) = 2 n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( n + 1 ) x 2 n + 1 = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( 2 n + 2 ) x 2 n + 1 = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n [ ( ( 2 n + 1 ) + 1 ) x 2 n + 1 ] = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( 2 n + 1 ) x 2 n + 1 + n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1 = n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n x 2 n + 1 + n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1 = n = 0 ∑ ∞ x ( 2 n ) ! ( − 1 ) n x 2 n + n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1 = x cos x + sin x = cos ( 1 ) + sin ( 1 ) c ∑ a n = ∑ c ⋅ a n for convergent series Distribute ( 2 n + 1 ) ! 2 n + 1 = ( 2 n ) ! 1 x 2 n + 1 = x ⋅ x 2 n
Problem Loading...
Note Loading...
Set Loading...
From Maclaurin series of sin ( x ) :
sin ( x ) = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1
Dividing by x on both sides:
x sin ( x ) = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n
Differentiating with respect to x on both sides:
x 2 x cos ( x ) − sin ( x ) = 2 n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n n x 2 n − 1
Multiplying by x 2 on both sides:
x cos ( x ) − sin ( x ) = 2 n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n n x 2 n + 1
x cos ( x ) − sin ( x ) = 2 ⎣ ⎡ n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n n x 2 n + 1 + n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1 − n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1 ⎦ ⎤
x cos ( x ) − sin ( x ) = 2 ⎣ ⎡ n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( n + 1 ) x 2 n + 1 − sin ( x ) ⎦ ⎤
x cos ( x ) + sin ( x ) = 2 n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n ( n + 1 ) x 2 n + 1
S ( x ) = x cos ( x ) + sin ( x )
So:
S ( 1 ) = cos ( 1 ) + sin ( 1 ) ≈ 1 . 3 8