Tomi's Challenges - #14

Calculus Level 4

If A = [ log n ( 2 log n 2 n ) 3 0 0 k = 1 n log n 1 2 k ln 2 3 ] [ 3 0 0 3 ] A=\begin{bmatrix} \sqrt[3]{\log_n(2^{\log_n2}n)} & 0\\ 0 & \sqrt[3]{\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2}} \end{bmatrix}^{\begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix}} ,

find lim n T r ( A log n 2 ) \lim_{n\to\infty} Tr(\frac{A}{\log_n2}) .

Details and assumptions:

  • T r ( A ) Tr(A) is the sum of all elements on the diagonal of the matrix.

  • n n is a natural number greater than 1.


The answer is -0.8327.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tomislav Franov
May 6, 2021

This exercise is all about logarithms! We will start by first simplifying A A .

A = [ log n ( 2 log n 2 n ) 3 0 0 k = 1 n log n 1 2 k ln 2 3 ] [ 3 0 0 3 ] = e [ 3 0 0 3 ] ln [ log n ( 2 log n 2 n ) 3 0 0 k = 1 n log n 1 2 k ln 2 3 ] = e [ 3 ln log n ( 2 log n 2 n ) 3 0 0 3 ln k = 1 n log n 1 2 k ln 2 3 ] = e [ ln log n ( 2 log n 2 n ) 0 0 ln k = 1 n log n 1 2 k ln 2 ] = [ log n ( 2 log n 2 n ) 0 0 k = 1 n log n 1 2 k ln 2 ] A=\begin{bmatrix} \sqrt[3]{\log_n(2^{\log_n2}n)} & 0\\ 0 & \sqrt[3]{\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2}} \end{bmatrix}^{\begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix}}=e^{{\begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix}\ln\begin{bmatrix} \sqrt[3]{\log_n(2^{\log_n2}n)} & 0\\ 0 & \sqrt[3]{\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2}} \end{bmatrix}}}=e^{{\begin{bmatrix} 3\ln\sqrt[3]{\log_n(2^{\log_n2}n)} & 0\\ 0 & 3\ln\sqrt[3]{\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2}} \end{bmatrix}}}=e^{{\begin{bmatrix} \ln\log_n(2^{\log_n2}n) & 0\\ 0 & \ln\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2} \end{bmatrix}}}={\begin{bmatrix} \log_n(2^{\log_n2}n) & 0\\ 0 & \sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2} \end{bmatrix}} .

Next, we need to find the value we need to take the limit of. Since the trace is a linear operator, and 1 l o g n 2 \frac{1}{log_n2} is a scalar from the field of the vector space of the matrix, we can conclude that T r ( A l o g n 2 ) = 1 l o g n 2 T r ( A ) = Tr(\frac{A}{log_n2})=\frac{1}{log_n2}Tr(A)=

log n ( 2 log n 2 n ) + k = 1 n log n 1 2 k ln 2 l o g n 2 \Large \frac{\log_n(2^{\log_n2}n)+\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2}}{log_n2}

We need to take the limit of this value.

lim n log n ( 2 log n 2 n ) + k = 1 n log n 1 2 k ln 2 l o g n 2 \Large \lim_{n\to\infty} \frac{\log_n(2^{\log_n2}n)+\sum_{k=1}^{n} \frac{\log_n\frac{1}{2}}{k\cdot\ln2}}{log_n2}

lim n 1 log n 2 + log n 2 k = 1 n log n 2 k ln 2 log n 2 \lim_{n\to\infty} \frac{1}{\log_n2}+\log_n2-\sum_{k=1}^{n} \frac{\log_n2}{k\cdot\ln2\log_n2}

lim n 1 log 2 n + log 2 n k = 1 n 1 k ln 2 \lim_{n\to\infty} \frac{1}{\log_2n}+\log_2n-\sum_{k=1}^{n} \frac{1}{k\cdot\ln2}

If we assume the rest of the limit is convergent, we get

lim n log 2 n k = 1 n 1 k ln 2 \lim_{n\to\infty} \log_2n-\sum_{k=1}^{n} \frac{1}{k\cdot\ln2}

lim n ln n ln 2 k = 1 n 1 k ln 2 \lim_{n\to\infty} \frac{\ln n}{\ln2}-\sum_{k=1}^{n} \frac{1}{k\cdot\ln2}

1 ln 2 lim n ln n k = 1 n 1 k \frac{1}{\ln2} \lim_{n\to\infty} \ln n-\sum_{k=1}^{n} \frac{1}{k}

1 ln 2 lim n ( k = 1 n 1 k ) ln n = γ ln 2 0.8327 -\frac{1}{\ln2} \lim_{n\to\infty} (\sum_{k=1}^{n} \frac{1}{k})-\ln n=-\frac{\gamma}{\ln2}\approx -0.8327 , where γ 0.5772 \gamma\approx 0.5772 is the Euler-Mascheroni constant.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...