A calculus problem by Priyanshu Mishra

Calculus Level 5

Given that n = 1 1 n 2 = π 2 6 \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } } = \frac { { \pi }^{ 2 } }{ 6 } , compute n = 1 1 2 n n 2 \displaystyle \sum _{ n=1 }^{\infty}{ \frac { 1 }{ { 2 }^{ n }{ n }^{ 2 } } } .


The answer is 0.582.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Feb 4, 2018

By integrating the geometric series formula, we can attain a closed form (as an integral) for the required summation. Let S \text{S} be the sum.

n = 1 x n = 1 1 x 1 Divide by x and integrate: \displaystyle\sum_{n=1}^\infty x^n=\frac1{1-x}-1\quad\text{Divide by x and integrate:}

n = 1 x n 1 d x = 1 ( 1 x ) ( x ) 1 x d x = 1 1 x d x \displaystyle\int\sum_{n=1}^\infty x^{n-1}dx=\int\frac1{(1-x)(x)}-\frac1{x}dx=\int\frac1{1-x}dx

n = 1 x n n = ln ( 1 x ) Now repeat, but integrate with limits 0 to .5 \displaystyle\sum_{n=1}^\infty\frac{x^n}{n}=-\ln{(1-x)}\quad\text{Now repeat, but integrate with limits 0 to .5}

n = 1 1 2 n n 2 = 0 1 2 n = 1 x n 1 n d x = 0 1 2 ln ( 1 x ) x d x \displaystyle\sum_{n=1}^\infty\frac1{2^nn^2}=\int_0^\frac1{2}\sum_{n=1}^\infty\frac{x^{n-1}}{n}dx=-\int_0^\frac1{2}\frac{\ln{(1-x)}}{x}dx

The above steps could be skipped by seeing directly the power series for ln ( 1 x ) x \frac{-\ln(1-x)}{x} , but it is a nice process.

0 1 2 ln ( 1 x ) x d x = ln x ln ( 1 x ) 0 1 2 + 0 1 2 ln ( x ) x 1 d x \displaystyle\int_0^\frac1{2}\frac{-\ln{(1-x)}}{x}dx=-\ln{x}\ln{(1-x)}\Big|^\frac1{2}_0+\int_0^\frac1{2}\frac{\ln(x)}{x-1}dx

0 1 2 ln ( x ) x 1 d x = 0 1 2 n = 0 ( 1 ) n ( x 1 ) n n + 1 d x = x ( x 1 ) 2 4 + ( x 1 ) 3 9 . . . 0 1 2 = \displaystyle\int_0^\frac1{2}\frac{\ln(x)}{x-1}dx=\int_0^\frac1{2}\sum_{n=0}^\infty\frac{(-1)^n(x-1)^n}{n+1}dx=x-\frac{(x-1)^2}{4}+\frac{(x-1)^3}{9}-...\Big|^\frac1{2}_0=

1 2 1 2 2 × 4 1 2 3 × 9 . . . + 1 4 + 1 9 + . . . = S + π 2 6 \displaystyle\frac1{2}-\frac1{2^2\times 4}-\frac1{2^3\times 9}-...+\frac1{4}+\frac1{9}+...=-S+\frac{\pi^2}{6}

Bringing all together: S = ln 2 1 2 S + π 2 6 S = ln 2 2 + π 2 6 \displaystyle\text{S}=-\ln^2{\frac1{2}}-\text{S}+\frac{\pi^2}{6}\quad\text{S}=-\ln^2{2}+\frac{\pi^2}{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...