This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
By integrating the geometric series formula, we can attain a closed form (as an integral) for the required summation. Let S be the sum.
n = 1 ∑ ∞ x n = 1 − x 1 − 1 Divide by x and integrate:
∫ n = 1 ∑ ∞ x n − 1 d x = ∫ ( 1 − x ) ( x ) 1 − x 1 d x = ∫ 1 − x 1 d x
n = 1 ∑ ∞ n x n = − ln ( 1 − x ) Now repeat, but integrate with limits 0 to .5
n = 1 ∑ ∞ 2 n n 2 1 = ∫ 0 2 1 n = 1 ∑ ∞ n x n − 1 d x = − ∫ 0 2 1 x ln ( 1 − x ) d x
The above steps could be skipped by seeing directly the power series for x − ln ( 1 − x ) , but it is a nice process.
∫ 0 2 1 x − ln ( 1 − x ) d x = − ln x ln ( 1 − x ) ∣ ∣ ∣ 0 2 1 + ∫ 0 2 1 x − 1 ln ( x ) d x
∫ 0 2 1 x − 1 ln ( x ) d x = ∫ 0 2 1 n = 0 ∑ ∞ n + 1 ( − 1 ) n ( x − 1 ) n d x = x − 4 ( x − 1 ) 2 + 9 ( x − 1 ) 3 − . . . ∣ ∣ ∣ 0 2 1 =
2 1 − 2 2 × 4 1 − 2 3 × 9 1 − . . . + 4 1 + 9 1 + . . . = − S + 6 π 2
Bringing all together: S = − ln 2 2 1 − S + 6 π 2 S = − ln 2 2 + 6 π 2