Tedious Multiplication? - 2

Calculus Level 2

lim n ( 5 1 × 6 2 × × n n 4 ) = ? \large \displaystyle \lim_{n \to \infty} \left( \dfrac{5}{1} \times \dfrac{6}{2} \times \cdots \times \dfrac{ n}{ n -4} \right) =\, ?


Inspiration .

2 1 3 0 Not Defined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jul 2, 2016

lim n ( r = 4 n 1 r + 1 r 3 ) = 1 24 lim n n ! ( n 4 ) ! lim n n ( n 1 ) ( n 2 ) ( n 3 ) 24 \quad \displaystyle \lim_{n \to \infty} \left( \prod_{r=4}^{n-1} \dfrac{r+1}{r-3} \right) = \dfrac{1}{24} \displaystyle \lim_{n \to \infty} \dfrac{n!}{(n-4)!} \\ \quad \displaystyle \lim_{n \to \infty} \dfrac{n(n-1)(n-2)(n-3)}{24} \rightarrow \infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...