Teens These Days

Find the remainder when 1 3 19 + 1 7 19 13^{19} + 17^{19} is divided by 15.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andrew Ellinor
Jan 21, 2016

We seek to find x x such that 1 3 19 + 1 7 19 x ( m o d 15 ) . 13^{19} + 17^{19} \equiv x \pmod {15}.

Fortunately, by rules of modular arithmetic , we know that

1 3 19 ( 2 ) 19 ( m o d 15 ) . 13^{19} \equiv (-2)^{19} \pmod{15}.

Similarly, 1 7 19 2 19 ( m o d 15 ) . 17^{19} \equiv 2^{19} \pmod{15}.

Therefore,

1 3 19 + 1 7 19 ( 2 ) 19 + 2 19 0 ( m o d 15 ) . 13^{19} + 17^{19} \equiv (-2)^{19} + 2^{19} \equiv \boxed{0} \pmod {15}.

Sathya Nc
Jan 23, 2016

a^n + b^n is divisible by a+b, provided n is odd. Here it is 30. So obviously, remainder is 0.

Nihar Mahajan
Jan 22, 2016

1 3 19 + 1 7 19 = ( 13 + 17 ) ( 1 3 18 1 3 17 . 17 + 1 7 17 . 13 + 1 7 18 ) = 30 × ( s u m ) multiple of 15 13^{19} + 17^{19} = (13+17)(13^{18} - 13^{17}.17 + \dots -17^{17}.13 +17^{18}) = 30\times (sum) \rightarrow \text{multiple of 15}

I used a n + b n = ( a + b ) ( a n 1 a n 2 b + a n 3 b 2 + a 2 b n 3 a b n 2 + b n 1 ) a^n+b^n = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \dots +a^2b^{n-3} - ab^{n-2}+b^{n-1}) for odd n > 1 n>1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...