Telescopic Products' Triads.

Algebra Level 5

n = 3 ( 1 4 n 2 ) + n = 2 n 3 1 n 3 + 1 + n = 3 ( 1 + 1 n ) 2 1 + 2 n = ? \prod _{ n=3 }^{ \infty }{\displaystyle \left( 1 - \frac { 4 }{ { n }^{ 2 } } \right) } + \prod _{ n=2 }^{ \infty }{ \frac {\displaystyle { n }^{ 3 } -1 }{ { n }^{ 3 } + 1 } } + \prod _{ n=3 }^{ \infty }{\displaystyle \frac { { \left( 1 + \frac { 1 }{ n } \right) }^{ 2 } }{ 1 + \frac { 2 }{ n } } } =?


The answer is 2.166.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 25, 2018

P 1 = n = 3 ( 1 4 n 2 ) = n = 3 ( n 2 4 n 2 ) = n = 3 ( ( n 2 ) ( n + 2 ) n 2 ) = n = 1 n n = 5 n n = 3 n n = 3 n = 1 2 3 4 = 1 6 \begin{aligned} P_1 & = \prod_{n=3}^\infty \left(1-\frac 4{n^2}\right) = \prod_{n=3}^\infty \left(\frac {n^2-4}{n^2}\right) = \prod_{n=3}^\infty \left(\frac {(n-2)(n+2)}{n^2}\right) = \frac {\color{#3D99F6}\prod_{n=1}^\infty n\color{#D61F06}\prod_{n=5}^\infty n }{\color{#3D99F6}\prod_{n=3}^\infty n \color{#D61F06}\prod_{n=3}^\infty n } = \frac {\color{#3D99F6}1\cdot 2}{\color{#D61F06}3\cdot 4} = \frac 16 \end{aligned}

P 2 = n = 2 n 3 1 n 3 + 1 = n = 2 ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = n = 2 ( n 1 ) n = 2 ( n 2 + n + 1 ) n = 2 ( n + 1 ) n = 2 ( n 2 n + 1 ) Note that n 2 + n + 1 = ( n + 1 ) 2 ( n + 1 ) + 1 = n = 1 n n = 3 ( n 2 n + 1 ) n = 3 n n = 2 ( n 2 n + 1 ) = 1 2 2 2 2 + 1 = 2 3 \begin{aligned} P_2 & = \prod_{n=2}^\infty \frac {n^3-1}{n^3+1} = \prod_{n=2}^\infty \frac {(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} = \frac {\prod_{n=2}^\infty (n-1) \prod_{n=2}^\infty\color{#3D99F6}(n^2+n+1)}{\prod_{n=2}^\infty (n+1) \prod_{n=2}^\infty (n^2-n+1)} & \small \color{#3D99F6} \text{Note that }n^2+n+1 = (n+1)^2 - (n+1) + 1 \\ & = \frac {\prod_{n=1}^\infty n \prod_{\color{#3D99F6}n=3}^\infty\color{#3D99F6}(n^2-n+1)}{\prod_{n=3}^\infty n \prod_{n=2}^\infty (n^2-n+1)} = \frac {1\cdot 2}{2^2-2+1} = \frac 23 \end{aligned}

P 3 = n = 3 ( 1 + 1 n ) 2 1 + 2 n = n = 3 ( n + 1 ) 2 n ( n + 2 ) = n = 3 ( n + 1 ) n = 3 ( n + 1 ) n = 3 n n = 3 ( n + 2 ) = n = 4 n n = 4 n n = 3 n n = 5 n = 4 3 \begin{aligned} P_3 & = \prod_{n=3}^\infty \frac {\left(1+\frac 1n\right)^2}{1+\frac 2n} = \prod_{n=3}^\infty \frac {(n+1)^2}{n(n+2)} = \frac {\prod_{n=3}^\infty (n+1) \prod_{n=3}^\infty (n+1)}{\prod_{n=3}^\infty n \prod_{n=3}^\infty (n+2)} = \frac {\prod_{n=4}^\infty n \prod_{n=4}^\infty n}{\prod_{n=3}^\infty n \prod_{n=5}^\infty n} = \frac 43 \end{aligned}

Therefore, P 1 + P 2 + P 3 = 1 6 + 2 3 + 4 3 = 13 6 2.167 P_1+P_2+P_3 = \dfrac 16+\dfrac 23 + \dfrac 43 = \dfrac {13}6 \approx \boxed{2.167} .

Mark Hennings
Apr 23, 2018

The first partial product is n = 3 N ( n 2 ) ( n + 2 ) n 2 = ( N 2 ) ! × 1 24 ( N + 2 ) ! 1 4 ( N ! ) 2 = ( N + 2 ) ( N + 1 ) 6 N ( N 1 ) \begin{aligned} \prod_{n=3}^N \frac{(n-2)(n+2)}{n^2} & = \; \frac{(N-2)! \times \frac{1}{24}(N+2)!}{\frac14 (N!)^2} \\ & = \; \frac{(N+2)(N+1)}{6N(N-1)} \end{aligned} and hence the first infinite product is 1 6 \tfrac16 .

The second partial product is n = 2 N n 3 1 n 3 + 1 = n = 2 N ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = n = 2 N ( n 1 ) [ n ( n + 1 ) + 1 ] ( n + 1 ) [ ( n 1 ) n + 1 ] = ( N 1 ) ! 1 2 ( N + 1 ) ! × n = 2 N [ n ( n + 1 ) + 1 ] n = 1 N 1 [ n ( n + 1 ) + 1 ] = 2 N ( N + 1 ) × N ( N + 1 ) + 1 3 \begin{aligned} \prod_{n=2}^N \frac{n^3-1}{n^3+1} & = \; \prod_{n=2}^N \frac{(n-1)(n^2 + n + 1)}{(n+1)(n^2-n+1)} \; = \; \prod_{n=2}^N \frac{(n-1)\big[n(n+1)+1\big]}{(n+1)\big[(n-1)n + 1\big]} \\ & = \; \frac{(N-1)!}{\frac12(N+1)!} \times \frac{\prod_{n=2}^N [n(n+1)+1]}{\prod_{n=1}^{N-1}[n(n+1)+1]} \\ & = \; \frac{2}{N(N+1)} \times \frac{N(N+1)+1}{3} \end{aligned} and hence the second infinite product is 2 3 \tfrac23 .

The third partial product is n = 3 N ( 1 + 1 n ) 2 1 + 2 n = n = 3 N ( n + 1 ) 2 n ( n + 2 ) = 1 36 ( ( N + 1 ) ! ) 2 1 2 N ! × 1 24 ( N + 2 ) ! = 4 ( N + 1 ) 3 ( N + 2 ) \begin{aligned} \prod_{n=3}^N \frac{(1 + \frac{1}{n})^2}{1 + \frac{2}{n}} & = \; \prod_{n=3}^N \frac{(n+1)^2}{n(n+2)} \\ & = \; \frac{\frac{1}{36}((N+1)!)^2}{\frac12N! \times \tfrac{1}{24}(N+2)!} \; = \; \frac{4(N+1)}{3(N+2)} \end{aligned} making the third infinite product 4 3 \tfrac43 . The sum of the three products is 1 6 + 2 3 + 4 3 = 2 1 6 \tfrac16 + \tfrac23 + \tfrac43 = \boxed{2\tfrac16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...