n = 1 ∏ ∞ 1 − tan 2 ( 2 − n ) 1 = tan k ,
The equation above holds true for some integer k .
Find k k − k ! .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have
tan 2 x = 1 − tan 2 x 2 tan x n = 1 ∏ N 1 − tan 2 ( 2 − n ) 1 = n = 1 ∏ N 2 tan ( 2 − n ) tan ( 2 − n + 1 ) = tan ( 2 − N ) 2 − N tan 1 .
And the rest follows.
In the problem, tan k ∘ should just be tan k . You specifically say that k is in radians. Likewise, k ∈ ( 0 , 1 8 0 ) should say k ∈ ( 0 , π ) .
Problem Loading...
Note Loading...
Set Loading...
P = N → ∞ lim n = 1 ∏ N 1 − tan 2 2 n 1 1 = N → ∞ lim n = 1 ∏ N 1 − tan 2 2 n 1 2 tan 2 n 1 ⋅ 2 tan 2 n 1 1 = N → ∞ lim n = 1 ∏ N tan 2 n 1 tan 2 n − 1 1 = N → ∞ lim 2 tan 2 1 tan 1 ⋅ 2 tan 4 1 tan 2 1 ⋅ 2 tan 8 1 tan 4 1 ⋯ 2 tan 2 N 1 tan 2 N − 1 1 = N → ∞ lim 2 N tan 2 N 1 ∘ tan 1 = N → ∞ lim 2 N 1 tan 2 N 1 tan 1 = tan 1
Therefore, k k − k ! = 1 1 − 1 = 0 .