Telescopic Trigonometry!

Algebra Level 3

n = 1 1 1 tan 2 ( 2 n ) = tan k \large \prod _{ n=1 }^{ \infty }{ \frac { 1 }{ 1-\tan ^{ 2 }{( { 2 }^{ -n }) } } } = \tan k ,

The equation above holds true for some integer k k .

Find k k k ! k^k - k! .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P = lim N n = 1 N 1 1 tan 2 1 2 n = lim N n = 1 N 2 tan 1 2 n 1 tan 2 1 2 n 1 2 tan 1 2 n = lim N n = 1 N tan 1 2 n 1 tan 1 2 n = lim N tan 1 2 tan 1 2 tan 1 2 2 tan 1 4 tan 1 4 2 tan 1 8 tan 1 2 N 1 2 tan 1 2 N = lim N tan 1 2 N tan 1 2 N = lim N tan 1 tan 1 2 N 1 2 N = tan 1 \begin{aligned} P & = \lim_{N \to \infty}\prod_{n=1}^N \frac 1{1-\tan^2 \frac 1{2^n}} \\ & = \lim_{N \to \infty}\prod_{n=1}^N {\color{#3D99F6}\frac {2\tan \frac 1{2^n}}{1-\tan^2 \frac 1{2^n}}}\cdot \frac 1{2\tan \frac 1{2^n}} \\ & = \lim_{N \to \infty}\prod_{n=1}^N \frac {\color{#3D99F6} \tan \frac 1{2^{n-1}}}{\tan \frac 1{2^n}} \\ & = \lim_{N \to \infty} \frac {\tan 1}{2 \cancel {\tan \frac 12}}\cdot \frac {\cancel{\tan \frac 12}}{2 \cancel{\tan \frac 14}}\cdot \frac {\cancel{\tan \frac 14}}{2 \cancel{\tan \frac 18}}\cdots \frac {\cancel{\tan \frac 1{2^{N-1}}}}{2 \tan \frac 1{2^N}} \\ & = \lim_{N \to \infty} \frac {\tan 1}{2^N \tan \frac {1^\circ}{2^N}} = \lim_{N \to \infty} \frac {\tan 1}{\frac {\tan \frac 1{2^N}}{\frac 1{2^N}}} \\ & = \tan 1 \end{aligned}

Therefore, k k k ! = 1 1 1 = 0 k^k - k! = 1^1 - 1 = \boxed{0} .

Priyanshu Mishra
May 26, 2018

We have

tan 2 x = 2 tan x 1 tan 2 x n = 1 N 1 1 tan 2 ( 2 n ) = n = 1 N tan ( 2 n + 1 ) 2 tan ( 2 n ) = 2 N tan ( 2 N ) tan 1 \large\ { \displaystyle \tan { 2x } = \frac { 2\tan { x } }{ 1 - \tan ^{ 2 }{ x } } \\ \displaystyle \prod _{ n=1 }^{ N }{ \frac { 1 }{ 1 - \tan ^{ 2 }{ \left( { 2 }^{ -n } \right) } } } = \displaystyle \prod _{ n=1 }^{ N }{ \frac { \tan { \left( { 2 }^{ -n+1 } \right) } }{ 2\tan { \left( { 2 }^{ -n } \right) } } } = \displaystyle \frac { { 2 }^{ -N } }{ \tan { \left( { 2 }^{ -N } \right) } } \tan { 1 } } .

And the rest follows.

In the problem, tan k \tan k^\circ should just be tan k \tan k . You specifically say that k k is in radians. Likewise, k ( 0 , 180 ) k \in (0,180) should say k ( 0 , π ) k \in (0,\pi) .

Jon Haussmann - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...