r = 1 ∑ ∞ cot − 1 ( 3 r 2 − 1 2 5 )
If the above summation can be expressed as cot − 1 A , enter your answer as 4 A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Writing a Proof by Induction
If we defined S n = r = 1 ∑ n cot − 1 ( 3 r 2 − 1 2 5 ) , where n is a positive integer, then we find that S n = cot − 1 ( 1 2 n 1 3 + 2 3 ) . Let us prove by induction that the claim is true for all n ≥ 1 .
For n = 1 , S 1 = cot − 1 ( 3 ( 1 2 ) − 1 2 5 ) = cot − 1 ( 1 2 3 1 ) = cot − 1 ( 1 2 ( 1 ) 1 3 + 2 3 ) . The claim is true for n = 1 .
Assuming the claim is true for n , then
S n + 1 = S n + cot − 1 ( 3 ( n + 1 ) 2 − 1 2 5 ) = cot − 1 ( 1 2 n 1 3 + 2 3 ) + cot − 1 ( 3 ( n + 1 ) 2 − 1 2 5 ) = cot − 1 ( 1 2 n 1 8 n + 1 3 ) + cot − 1 ( 1 2 3 6 ( n + 1 ) 2 − 5 ) = cot − 1 ( 1 2 n 1 8 ( n + 1 ) − 5 ) + cot − 1 ( 1 2 3 6 ( n + 1 ) 2 − 5 ) = cot − 1 ( 1 2 n 1 8 ( n + 1 ) − 5 + 1 2 3 6 ( n + 1 ) 2 − 5 1 2 n 1 8 ( n + 1 ) − 5 × 1 2 3 6 ( n + 1 ) 2 − 5 − 1 ) = cot − 1 ( 4 3 2 ( n + 1 ) 3 − 4 3 2 ( n + 1 ) 2 + 1 5 6 ( n + 1 ) 2 6 4 8 ( n + 1 ) 3 − 1 8 0 ( n + 1 ) 2 − 2 3 4 ( n + 1 ) + 1 6 9 ) = cot − 1 ( 2 3 + 1 2 ( n + 1 ) 1 3 )
Showing that the claim is also true for n + 1 , therefore, it is true for all n ≥ 1 .
Now we have n → ∞ lim S n = n → ∞ lim cot − 1 ( 1 2 n 1 3 + 2 3 ) = cot − 1 2 3 . ⟹ 4 A = 4 × 2 3 = 6 .
Problem Loading...
Note Loading...
Set Loading...
Important identities: cot − 1 x = tan − 1 x 1 ; tan − 1 ∞ = 2 π ; tan − 1 x + cot − 1 x = 2 π
The series is = tan − 1 3 6 r 2 − 5 1 2
Dividing by 4,
= tan − 1 1 + ( 9 r 2 − 4 9 ) 3
= tan − 1 1 + ( 3 r + 1 . 5 ) ( 3 r − 1 . 5 ) ( 3 r + 1 . 5 ) − ( 3 r − 1 . 5 ) = tan − 1 ( 3 r + 1 . 5 ) − tan − 1 ( 3 r − 1 . 5 )
This would form a telescopic series, where each term will be cancelled out by the following terms, leaving only tan − 1 ∞ − tan − 1 ( 1 . 5 ) = cot − 1 1 . 5