Telescoping Cubes

Calculus Level 3

n = 2 n 3 1 n 3 + 1 \large \displaystyle \prod_{n=2}^{\infty} \dfrac {n^3-1}{n^3 + 1}

If the value of the above expression can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P = n = 2 n 3 1 n 3 + 1 = n = 2 ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = n = 2 ( n 1 ) n = 2 [ ( n + 1 2 ) 2 + 3 4 ] n = 2 ( n + 1 ) n = 2 [ ( n 1 2 ) 2 + 3 4 ] = 1 2 n = 2 ( n + 1 ) n = 2 [ ( n + 1 2 ) 2 + 3 4 ] n = 2 ( n + 1 ) [ ( 2 1 2 ) 2 + 3 4 ] n = 2 [ ( n + 1 2 ) 2 + 3 4 ] = 1 2 ( 3 2 ) 2 + 3 4 = 2 9 4 + 3 4 = 2 3 \begin{aligned} P & = \prod_{n=2}^\infty \frac{n^3-1}{n^3+1} \\ & = \prod_{n=2}^\infty \frac{(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)} \\ & = \frac{\displaystyle \color{#3D99F6}{\prod_{n=2} ^\infty (n-1)} \prod_{n=2} ^\infty \left[ \left(n + \frac{1}{2}\right)^2 + \frac{3}{4}\right]}{\displaystyle \prod_{n=2} ^\infty (n+1) \color{#D61F06}{\prod_{n=2} ^\infty \left[\left(n - \frac{1}{2}\right)^2 + \frac{3}{4}\right]}} \\ & = \frac{\displaystyle \color{#3D99F6}{1\cdot{} 2 \cdot{} \prod_{n=2} ^\infty (n+1)} \cdot{} \prod_{n=2} ^\infty \left[ \left(n + \frac{1}{2}\right)^2 + \frac{3}{4}\right]}{\displaystyle \prod_{n=2} ^\infty (n+1) \cdot{} \color{#D61F06}{ \left[\left(2 - \frac{1}{2}\right)^2 + \frac{3}{4}\right] \prod_{n=2} ^\infty \left[\left(n + \frac{1}{2}\right)^2 + \frac{3}{4}\right]}} \\ & = \frac{1 \cdot{} 2}{\left(\frac{3}{2}\right)^2 + \frac{3}{4}} = \frac{2}{\frac{9}{4}+\frac{3}{4}} = \frac{2}{3} \end{aligned}

a + b = 2 + 3 = 5 \Rightarrow a + b = 2 + 3 = \boxed{5}

Sayandeep Ghosh
Apr 4, 2016

Same problem given by Aditya sharma

This problem has been posted many a times.

Rohit Udaiwal - 5 years, 2 months ago

Log in to reply

Exactly..... Many a times this problem has been posted

Rishabh Jain - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...