Telescoping Series

Algebra Level 3

Simplify

1 1 + 2 + 1 2 + 3 + 1 3 + 4 + + 1 2015 + 2016 + 1 2016 + 2017 \frac{1}{\sqrt 1+ \sqrt2} +\frac{1}{\sqrt2+\sqrt3}+ \frac{1}{\sqrt3+\sqrt4} +\cdots + \frac{1}{\sqrt{2015}+\sqrt{2016}}+ \frac{1}{\sqrt{2016}+\sqrt {2017}}

2017 \sqrt{2017} 2017 2017 2017 1 \sqrt{2017} - 1 1 + 2017 1 + \sqrt{2017}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 12, 2017

S = 1 1 + 2 + 1 2 + 3 + 1 3 + 4 + . . . + 1 2016 + 2017 = 2 1 ( 2 + 1 ) ( 2 1 ) + 3 2 ( 3 + 2 ) ( 3 2 ) + 4 3 ( 4 + 3 ) ( 4 3 ) + . . . + 2017 2016 ( 2017 + 2016 ) ( 2017 2016 ) = 2 1 2 1 + 3 2 3 2 + 4 3 4 3 + . . . + 2017 2016 2017 2016 = 2 1 1 + 3 2 1 + 4 3 1 + . . . + 2017 2016 1 = 2 1 + 3 2 + 4 3 + . . . + 2017 2016 = 2 1 + 3 2 + 4 3 + . . . + 2017 2016 = 2017 1 \begin{aligned} S & = \frac 1{\sqrt 1 + \sqrt 2} + \frac 1{\sqrt 2 + \sqrt 3} + \frac 1{\sqrt 3 + \sqrt 4} + ... + \frac 1{\sqrt{2016} + \sqrt {2017}} \\ & = \frac {\sqrt 2 - \sqrt 1}{(\sqrt 2 + \sqrt 1)(\sqrt 2 - \sqrt 1)} + \frac {\sqrt 3 - \sqrt 2}{(\sqrt 3 + \sqrt 2)(\sqrt 3 - \sqrt 2)} + \frac {\sqrt 4 - \sqrt 3}{(\sqrt 4 + \sqrt 3)(\sqrt 4 - \sqrt 3)} + ... + \frac {\sqrt {2017} - \sqrt {2016}}{(\sqrt {2017} + \sqrt {2016})(\sqrt {2017} - \sqrt {2016})} \\ & = \frac {\sqrt 2 - \sqrt 1}{2-1} + \frac {\sqrt 3 - \sqrt 2}{3-2} + \frac {\sqrt 4 - \sqrt 3}{4-3} + ... + \frac {\sqrt {2017} - \sqrt {2016}}{2017-2016} \\ & = \frac {\sqrt 2 - \sqrt 1}1 + \frac {\sqrt 3 - \sqrt 2}1 + \frac {\sqrt 4 - \sqrt 3}1 + ... + \frac {\sqrt {2017} - \sqrt {2016}}1 \\ & = \sqrt 2 - \sqrt 1 + \sqrt 3 - \sqrt 2 + \sqrt 4 - \sqrt 3 + ... + \sqrt {2017} - \sqrt {2016} \\ & = \cancel{\sqrt 2} - \sqrt 1 + \cancel{\sqrt 3} - \cancel{\sqrt 2} + \cancel{\sqrt 4} - \cancel{\sqrt 3} + ... + \sqrt {2017} - \cancel{\sqrt {2016}} \\ & = \boxed{\sqrt{2017} - 1} \end{aligned}

Keshav Ramesh
Feb 12, 2017

I'm just going to make this simple, because the LaTeX for this would take quite a long time.

First, rationalize the denominators. We can see here that there is one negative 2 \sqrt{2} value and one positive 2 \sqrt{2} value. This goes for all radicals up to 2016 \sqrt{2016} . Therefore, these values cancel out. After this simplification is performed, 2017 \sqrt{2017} only appears once (as a positive value) and in the beginning, 1 \sqrt{1} appears as a negative value (when the entire expression is simplified). Simplifying, we subtract 2017 1 = 2017 1 \sqrt{2017}-\sqrt{1}=\sqrt{2017}-1

Brian Moehring
Feb 11, 2017

For any k 0 k\geq 0 we may write 1 k + k + 1 = k + 1 k ( k + k + 1 ) ( k + 1 k ) = k + 1 k ( k + 1 ) k = k + 1 k \frac{1}{\sqrt{k}+\sqrt{k+1}} = \frac{\sqrt{k+1} - \sqrt{k}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k+1} - \sqrt{k}\right)} = \frac{\sqrt{k+1}-\sqrt{k}}{(k+1)-k} = \sqrt{k+1}-\sqrt{k}

Applying this to each term of the given series allows us to rewrite it as ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 2016 2015 ) + ( 2017 2016 ) = 2017 1 = 2017 1 \left(\sqrt{2} - \sqrt{1}\right) + \left(\sqrt{3} - \sqrt{2}\right) + \left(\sqrt{4} - \sqrt{3}\right) + \cdots + \left(\sqrt{2016} - \sqrt{2015}\right) + \left(\sqrt{2017} - \sqrt{2016}\right) = \sqrt{2017} - \sqrt{1} = \boxed{\sqrt{2017}-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...