Telescoping Sum Of Fractions

Algebra Level 2

Evaluate

1 2 ( n 1 ) × n 1 2 n × ( n + 1 ) . \frac{ 1}{ 2(n-1) \times n } - \frac{ 1} { 2 n \times (n+1) }.

1 ( n 1 ) × ( n + 1 ) \frac{ 1} { (n-1) \times (n+1) } 2 n 1 ( n 1 ) × n × ( n + 1 ) \frac{ 2n-1 } { (n-1) \times n \times (n+1) } 1 ( n 1 ) × n × ( n + 1 ) \frac{ 1} { (n-1) \times n \times (n+1) } 1 n \frac{ 1}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chinmay Prabhakar
Apr 10, 2014

1/2 n {1/n-1 - 1/n+1}= 1/2n *{(n+1- (n-1))/(n-1) (n+1)} =1/2n* {2/(n-1) (n+1)} =1/n (n-1)*(n+1)

\(\dfrac{1}{2(n-1)×n}-\dfrac{1}{2n×(n+1)}=

\dfrac{1}{(2n-2)×n}-\dfrac{1}{(2n^2+2n)}=

\dfrac{1}{(2n^2-2n)}-\dfrac{1}{(2n^2+2n)}=

\dfrac{2n^2+2n}{(2n^2-2n)(2n^2+2n)}-\dfrac{2n^2-2n}{(2n^2+2n)(2n^2-2n)}=

\dfrac{2n^2+2n-2n^2+2n}{(2n^2-2n)(2n^2+2n)}=

\dfrac{4n}{(2n^2-2n)(2n^2+2n)}=

\dfrac{4n}{(4n^4-4n^2)}=

\dfrac{4n}{4n^2(n^2-1)}=

\dfrac{4n}{(4n^4-4n^2)}=

\dfrac{1}{n(n^2-1)}=

\boxed{\dfrac{1}{n×(n+1)×(n-1)}}\)

Side note: Taking common denominator would reduce some of the arithmetic (and hence possibility of errors).

Calvin Lin Staff - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...