Telescoping Sum

Calculus Level 3

Find the value of 2 × 1 + 1 1 2 × 2 2 + 2 × 2 + 1 2 2 × 3 2 + 2 × 3 + 1 3 2 × 4 2 + . . . \frac{2\times 1 +1}{1^2 \times 2^2}+\frac{2\times 2 +1}{2^2 \times 3^2}+\frac{2\times 3 +1}{3^2\times 4^2}+...

2 2 \infty 2 3 \frac{2}{3} 1 1 e e 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 20, 2020

S = n = 1 2 n + 1 n 2 ( n + 1 ) 2 = n = 1 ( n + 1 ) 2 n 2 n 2 ( n + 1 ) 2 = n = 1 ( 1 n 2 1 ( n + 1 ) 2 ) = n = 1 1 n 2 n = 2 1 n 2 = 1 1 2 = 1 \begin{aligned} S & = \sum_{n=1}^\infty \frac {2n+1}{n^2(n+1)^2} \\ & = \sum_{n=1}^\infty \frac {(n+1)^2 -n^2}{n^2(n+1)^2} \\ & = \sum_{n=1}^\infty \left(\frac 1{n^2} - \frac 1{(n+1)^2} \right) \\ & = \sum_{n=1}^\infty \frac 1{n^2} - \sum_{n=2}^\infty \frac 1{n^2} \\ & = \frac 1{1^2} = \boxed 1 \end{aligned}

The title of the problem gives it's solution . For any number a a , we can write 1 a 2 1 ( 1 + a ) 2 = 2 a + 1 a 2 × ( a + 1 ) 2 \dfrac{1}{a^2}-\dfrac{1}{(1+a)^2}=\dfrac{2a+1}{a^2\times (a+1)^2} . Hence the given sum is 1 1 2 1 2 2 + 1 2 2 1 3 2 + 1 3 2 1 4 2 + . . . = 1 \dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...=\boxed 1 .

ChengYiin Ong
Apr 20, 2020

The desired sum is n = 1 2 n + 1 n 2 ( n + 1 ) 2 = n = 1 ( 1 n 2 1 ( n + 1 ) 2 ) = lim n ( 1 1 1 ( n + 1 ) 2 ) = 1 \sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}=\sum_{n=1}^{\infty} (\frac{1}{n^2}-\frac{1}{(n+1)^2})=\lim_{n\rightarrow \infty} (\frac{1}{1}-\frac{1}{(n+1)^2})=1

Put the two quantities within a bracket to indicate that the sum runs over both of them. The same for the limit.

A Former Brilliant Member - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...