Telescoping the Reciprocals!

Algebra Level 4

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + + 100 98 ! + 99 ! + 100 ! \begin{aligned} \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \frac{5}{3!+4!+5!} + \cdots+ \frac{100}{98!+99!+100!} \end{aligned}

Find the value of the expression above.

The answer is a form of 1 a ! 1 b ! \frac{1}{a!} - \frac{1}{b!} . Submit your answer as a × b a \times b .

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


This problem is one of my set, Let's Practice .


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Telescoping Series - Sum

Now, note that 3 1 ! + 2 ! + 3 ! = 3 1 ! ( 1 + 2 + 2 × 3 ) \frac{3}{1!+2!+3!} = \frac{3}{1!(1+2+2 \times 3)}

3 1 ! × 9 = 1 3 = 2 3 × 2 × 1 \frac{3}{1! \times 9} = \frac{1}{3} = \frac{2}{3 \times 2 \times 1}

= 2 3 ! = 1 2 ! 1 3 ! = \frac{2}{3!} = \frac{1}{2!} - \frac{1}{3!} .

We have 3 1 ! + 2 ! + 3 ! = 1 2 ! 1 3 ! \frac{3}{1!+2!+3!} = \frac{1}{2!} - \frac{1}{3!}

Simplify each terms, we have

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + . . . + 100 98 ! + 99 ! + 100 ! \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \frac{5}{3!+4!+5!} + ... + \frac{100}{98!+99!+100!}

= 1 2 ! 1 3 ! + 1 3 ! 1 4 ! + 1 4 ! 1 5 ! + . . . . . . . . 1 100 ! = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \frac{1}{4!} - \frac{1}{5!} + ........ - \frac{1}{100!}

After all, we have

1 2 ! 1 100 ! = 1 a ! 1 b ! \frac{1}{2!} - \frac{1}{100!} = \frac{1}{a!} - \frac{1}{b!}

a = 2 a=2 and b = 100 b=100 .

Hence, a × b = 200 a \times b = \boxed{200} .

Prakhar Bindal
Jan 3, 2017

The general term of the series is

1/r!(r+2)

Multiplying and dividing by r+1

r+1/(r+2)! = 1/(r+1)!-1/(r+2)!

which is clearly a telescoping series and telescopes to 1/2!-1/100!

Hence ab = 200

Hi sir. I want to ask about something. How to put this problem into my set? I forget how to do it. Can you help me? - @Prakhar Bindal

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

and you can call me prakhar!

Prakhar Bindal - 4 years, 5 months ago

At the bottom right of the problem Three dots will be coming . you click on that you will get the option save click on that @Fidel Simanjuntak

Prakhar Bindal - 4 years, 5 months ago

Ok, thx Prakhar.

Fidel Simanjuntak - 4 years, 5 months ago

a n = n ( n 2 ) ! + ( n 1 ) ! + ( n ) ! = n ( n 2 ) ! { 1 + ( n 1 ) + ( n 1 ) n } = 1 ( n 2 ) ! n = n 1 ( n 2 ) ! ( n 1 ) n = n 1 n ! = 1 ( n 1 ) ! 1 n ! n = 3 100 a n = n = 3 100 { 1 ( n 1 ) ! 1 n ! } n = 3 3 1 ( n 1 ) ! + n = 4 100 1 ( n 1 ) ! n = 3 100 1 n ! n = 3 3 1 ( n 1 ) ! + { n = 3 99 1 n ! n = 3 99 1 n ! } n = 100 100 1 n ! n = 3 100 a n = n = 3 3 1 ( n 1 ) ! + 0 n = 100 100 1 n ! = 1 2 ! 1 100 ! = 1 a ! 1 b ! a b = 2 100 = 200. a_n=\dfrac n {(n-2)!+(n-1)!+(n)!}=\dfrac n {(n-2)!*\bigg \{1+(n-1)+(n-1)*n \bigg \} }\\ =\dfrac 1 {(n-2)!*n}=\dfrac{n-1}{(n-2)!*(n-1)*n}\\ =\dfrac {n-1}{n!}=\dfrac 1 {(n-1)!}- \dfrac 1 {n!}\\ \therefore~\displaystyle \sum_{n=3}^{100} a_n= \sum_{n=3}^{100} \Bigg \{\dfrac 1 {(n-1)!}- \dfrac 1 {n!} \Bigg \}\\ \therefore~\displaystyle \sum_{n=3}^3 \dfrac 1 {(n-1)!} +\sum_{n=4}^{100} \dfrac 1 {(n-1)!} - \sum_{n=3}^{100} \dfrac 1 {n!}\\ \therefore~\displaystyle \sum_{n=3}^3 \dfrac 1 {(n-1)!} + { \Large \Bigg \{ \color{#3D99F6}{ \sum_{n=3}^{99} \dfrac 1 {n!} - \sum_{n=3}^{99} \dfrac 1 {n!}} \Bigg \} } - \sum_{n=100}^{100} \dfrac 1 {n!} \\ \therefore~\displaystyle \sum_{n=3}^{100} a_n=\sum_{n=3}^3 \dfrac 1 {(n-1)!} + 0 - \sum_{n=100}^{100} \dfrac 1 {n!} \\ =\dfrac 1 {2!} - \dfrac 1 {100!}=\dfrac 1 {a!} - \dfrac 1 {b!}\\ \therefore~a*b=2*100=\Large \color{#D61F06}{200}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...