Tell the sum.

Algebra Level 5

Find the sum of all real values of x x in the interval [ 1 , 101 ] [1,101] such that 1 1 , { x } \{x\} , and { x 2 } \{x^2\} (in that order) form a geometric progression with a non-zero ratio. Here { x } \{x\} denotes fractional part of x x .


The answer is 676650.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Dec 12, 2017

Let x = n + a x = n + a with 1 n N 1 \leq n \leq N an integer and 0 a < 1 0 \leq a < 1 . Then { x } = a \{x\} = a and { x 2 } = { n 2 + 2 a n + a 2 } = { 2 a n + a 2 } . \{x^2\} = \{n^2 + 2an + a^2\} = \{2an + a^2\}. In order for { x 2 } = a 2 \{x^2\} = a^2 , it is therefore necessary that 2 a n 2an is an integer. This is possible provided that a = k 2 n 1 k < 2 n an integer . a = \frac{k}{2n}\ \ \ \ 1 \leq k < 2n\ \text{an integer}. There are n = 1 N ( 2 n 1 ) = N 2 \sum_{n=1}^N (2n-1) = N^2 such combinations of n n and k k . To add them, consider that the average of the fractional parts { x } \{x\} is 1 2 \tfrac12 , so that we calculate n = 1 N ( 2 n 1 ) ( n + 1 2 ) = n = 1 N 2 n 2 1 2 = 1 3 N ( N + 1 ) ( 2 N + 1 ) 1 2 N . \sum_{n=1}^N (2n-1)(n + \tfrac12) = \sum_{n=1}^N 2n^2 - \tfrac12 = \tfrac13N(N+1)(2N+1) - \tfrac12N. Substitute N = 100 N = 100 to find 100 101 201 3 100 2 = 676 700 50 = 676 , 650 . 100\cdot 101\cdot \frac{201}3 - \frac{100}2 = 676\,700 - 50 = \boxed{676,650}.

To be in G.P. they must satisfy the equation { x 2 } \{x^2\} = { x } 2 \{x\}^2 with x x not being integer. Let x = a x = a be one of the solutions between n n and n + 1 n+1 where n n is any natural number. Then n < a < n + 1 n<a<n+1 which implies n 2 < a 2 < ( n + 1 ) 2 n^2<a^2<(n+1)^2 or n 2 < a 2 < n 2 + 2 n + 1 n^2<a^2<n^2+2n+1 or n 2 + 1 a 2 n 2 + 2 n n^2 + 1\leq \lfloor a^2\rfloor\leq n^2 + 2n

In general, a 2 \lfloor a^2\rfloor = n 2 + r n^2+r , 1 r 2 n 1\leq r\leq2n , r N r \in N

Now, { a 2 } \{a^2\} = { a } 2 \{a\}^2
\Rightarrow a 2 a^2 - a 2 \lfloor a^2\rfloor = ( a a ) 2 (a-\lfloor a\rfloor)^2 \Rightarrow a 2 a^2 - a 2 \lfloor a^2\rfloor = a 2 + a 2 2 a a a^2+ \lfloor a\rfloor^2\ - 2a\lfloor a\rfloor \Rightarrow 2 a a = a 2 + a 2 2a\lfloor a\rfloor = \lfloor a\rfloor^2\ + \lfloor a^2\rfloor

We have a 2 \lfloor a^2\rfloor = n 2 + r n^2+r and a = n \lfloor a\rfloor = n

So, 2 a n = n 2 + n 2 + r 2an = n^2+n^2+r

\Rightarrow a = 2 n 2 + r 2 n a = \frac{2n^2+r}{2n} or a = n + r 2 n a=n+\frac{r}{2n}
a a is not an integer \Rightarrow r 2 n r\ne 2n

Hence, between n n and n + 1 n+1 , x = n + r 2 n x=n+\frac{r}{2n} ; 1 r 2 n 1 1\leq r\leq 2n-1 , r N , n N r \in N , n \in N are the solutions. Now sum of these solution,

S n = r = 1 2 n 1 ( n + r 2 n ) S_n = \sum_{r=1}^{2n-1} (n+\frac{r}{2n}) \Rightarrow S n = n ( 2 n 1 ) + ( 2 n 1 ) ( 2 n ) 2.2 n S_n = n(2n-1) + \frac{(2n-1)(2n)}{2.2n} = ( 2 n 1 ) ( n + 1 2 ) (2n-1)(n+\frac{1}{2}) = 4 n 2 1 2 \frac{4n^2-1}{2} Our final sum S = n = 1 100 S n S = \sum_{n=1}^{100} S_n \Rightarrow S = n = 1 100 ( 4 n 2 1 2 ) = 2 n = 1 100 n 2 n = 1 100 1 2 S = \sum_{n=1}^{100} (\frac{4n^2-1}{2}) = 2\sum_{n=1}^{100} n^2 - \sum_{n=1}^{100} \frac{1}{2}

\Rightarrow S = 1 3 100 101 201 50 S = \frac{1}{3}\cdot 100\cdot 101\cdot 201 - 50 = 676700 50 = 676650 676700 - 50 = 676650

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...