Ten points on a circle

Geometry Level pending

There are ten points on a circle that are equally spaced, namely A 1 , A 2 , A 3 , , A 10 A_1, A_2, A_3,\ldots,A_{10} .

If C C is the center of the circle, what is the measure in degrees, of the angle A 1 A 5 C A_1A_5C ?


Problem and Image: Courtesy Waterloo University
10 120 72 18 36 144

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hana Wehbi
Mar 9, 2017

We know that A 1 C A 2 = 360 10 = 36 \angle A_1CA_2 = \frac{360}{10}=36 degrees, since the points are equally spaced and we are calculating the central angle, thus A 1 C A 5 = 4 ( 36 ) = 144 \angle A_1CA_5= 4(36)= 144 degrees.

We know that A 1 C A 5 \triangle A_1CA_5 is an isosceles triangle (equal radii : A 1 C = A 5 C A_1C = A_5C )

Thus A 1 A 5 C = 180 144 = 36 2 = 18 \angle A_1A_5C = 180 -144 = \frac{36}{2} = 18 degrees.

Viki Zeta
Mar 9, 2017

Join A 7 A 6 C A_7A_6C . Now since the circle is divided into 10 equal parts, A 7 C 6 = 360 10 = 36 \angle A_7C_6 = \dfrac{360}{10} = 36 .

Join A 1 C A 5 A_1CA_5 , now the angle A 1 C A 5 \angle A_1CA_5 is divided into 4 equal anngles of 36 \angle 36 each. Therefore,

A 1 C A 5 = 4 × 36 = 144 \angle A_1CA_5 = 4 \times 36 = 144

Hence, Δ A 1 C A 5 \Delta A_1C_A5 is isoceles, C A 1 = C A 5 CA_1 = CA_5 .

A 1 A 5 C = 90 A 1 C A 5 2 (using angle sum property) A 1 A 5 C = 90 72 = 18 \therefore \angle A_1A_5C = 90 - \dfrac{\angle A_1CA_5}{2} \text{ (using angle sum property)} \\ \boxed{\therefore \angle A_1A_5C = 90 - 72 = 18}

Similar to mine but looks nicer :) Thank you.

Hana Wehbi - 4 years, 3 months ago

Log in to reply

no problem

Viki Zeta - 4 years, 3 months ago
Toshit Jain
Mar 9, 2017

T h e a r e a o f s e c t o r A 1 C A 10 i s 1 10 t h t h e a r e a o f c i r c l e a s t h e 10 p o i n t s a r e e q u a l l y p l a c e d The \space area \space of \space sector \space A_1CA_{10} \space is \space \frac{1}{10}th \space the \space area \space of \space circle \space as \space the \space 10 \space points \space are \space equally \space placed U s i n g A r e a o f S e c t o r , θ 360 × π r 2 = 1 10 × π r 2 Using \space Area \space of \space Sector , \space \frac{\theta}{360} \times {\pi}r^{2} \space = \space \frac{1}{10} \times {\pi}r^{2} H e r e , θ = C e n t r a l A n g l e s u s p e n d e d b y a r c A 1 A 10 Here, \space \theta \space = \space Central \space Angle \space suspended \space by \space arc \space A_1A_{10} θ = 3 6 \Rightarrow \space \theta \space =\space 36^{\circ} W e k n o w , a n g l e s u b t e n d e d b y a c h o r d a t t h e c e n t r e i s d o u b l e t h e a n g l e s u b t e n d e d b y i t i n o n t h e c i r c u m f e r e n c e o f t h e c i r c l e We \space know \space , \space angle \space subtended \space by \space a \space chord \space at \space the \space centre \space is \space double \space the \space angle \space subtended \space by \space it \space in \space on \space the \space circumference \space of \space the \space circle A 1 C A 10 = 2 A 1 A 5 A 10 \Rightarrow \angle{A_1CA_{10}} \space = \space 2\angle{A_1A_5A_{10}} A 1 A 5 A 10 = A 1 A 5 C \angle{A_1A_5A_{10}} \space=\space \angle{A_1A_5C} 3 6 = 2 A 1 A 5 C 36^{\circ} \space=\space 2\angle{A_1A_5C} A 1 A 5 C = 1 8 \therefore \boxed{\angle{A_1A_5C}\space=\space 18^{\circ}}

Nice solution. Thank you.

Hana Wehbi - 4 years, 3 months ago

@Hana Nakkache Thanks :)

Toshit Jain - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...