Tensor Product Properties

Two spin state are given by Ψ 1 = |\Psi_1\rangle = |\uparrow\rangle and Ψ 2 = 1 2 ( + ) |\Psi_2 \rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle) .

Which gives the correct tensor product state Ψ 1 Ψ 2 |\Psi_1 \rangle \otimes |\Psi_2\rangle ?

Note : The notation = |\uparrow\downarrow\rangle = |\uparrow\rangle \otimes |\downarrow\rangle is a common shorthand for tensor products of spin states.

1 2 \frac{1}{\sqrt{2}} \vert\uparrow\uparrow\rangle 1 2 ( + ) \frac{1}{\sqrt{2}} (\vert\uparrow\uparrow\rangle + \vert\downarrow\uparrow\rangle) 1 2 \frac{1}{\sqrt{2}} \vert\uparrow\downarrow\rangle 1 2 ( + ) \frac{1}{\sqrt{2}} (\vert\uparrow\uparrow\rangle + \vert\uparrow\downarrow\rangle)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt DeCross
May 10, 2016

The distributivity of the tensor product gives the solution:

Ψ 1 Ψ 2 = 1 2 ( + ) = 1 2 ( + ) , |\Psi_1\rangle\otimes|\Psi_2\rangle = |\uparrow\rangle \otimes \frac{1}{\sqrt{2}} ( |\uparrow\rangle + |\downarrow\rangle) = \frac{1}{\sqrt{2}}( |\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle),

as claimed.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...