Tenth Row?

Algebra Level 2

Complete the table:

1 = ? 3 + 5 = ? 7 + 9 + 11 = ? 13 + 15 + 17 + 19 = ? \begin{array} {c} 1= ?\\ 3+5=?\\ 7+9+11= ? \\ 13+15+17+19= ?\end{array}

Then deduce the sum of the numbers in the tenth row (that should be indicated on the right hand side)?


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Row number n Row sum S n 1 1 = 1 1 3 2 3 + 5 = 8 2 3 3 7 + 9 + 11 = 27 3 3 4 13 + 15 + 17 + 19 = 64 4 3 \begin{array} {ccc} \text{Row number }n & & \text{Row sum }S_n \\ \color{#D61F06}1 & 1=1 & {\color{#D61F06}1}^3 \\ \color{#D61F06}2 & 3+5=8 & {\color{#D61F06}2}^3 \\ \color{#D61F06}3 & 7+9+11=27 & {\color{#D61F06}3}^3 \\ \color{#D61F06}4 & 13+15+17+19 =64 & {\color{#D61F06}4}^3 \end{array}

From the above we can deduce that the sum of the numbers in the n n th row S n = n 3 S_n = n^3 , therefore that of the 10th row is S 10 = 1 0 3 = 1000 S_{10} = 10^3 = \boxed{1000} .

Let us prove the claim S n = n 3 S_n = n^3 is true for all n N n \in \mathbb N .

Proof:

We note that { a k } \{a_k\} , the terms of n n th row, are in an arithmetic progression . From the first few n n , we note that the first term is given by a 1 = n ( n 1 ) + 1 = n 2 n + 1 a_1 = n(n-1)+1=n^2-n+1 . The common difference is d = 2 d=2 and the number of term is n n . Therefore, the sum of the terms of n n th row is

S n = n ( 2 a 1 + ( n 1 ) d ) 2 = n ( 2 ( n 2 n + 1 ) + 2 ( n 1 ) ) 2 = n ( n 2 n + 1 + n 1 ) = n 3 \begin{aligned} S_n & = \frac {n(2a_1+(n-1)d)}2 \\ & = \frac {n\left(2(n^2-n+1)+2(n-1)\right)}2 \\ & = n\left(n^2-n+1+n-1\right) \\ & = n^3 \ \square \end{aligned}

Thank you. The proof is essential to indicate there is an abstract solution to this problem rather than seeing a pattern, nicely done as usual.

Hana Wehbi - 3 years, 11 months ago
Zach Abueg
Jul 4, 2017

Observe that the sum of the numbers in the n t h n^{th} row equals the sum of all of the numbers in the table minus the sum of the numbers from the first to the ( n 1 ) t h (n - 1)^{th} row. For instance, for the fourth row we have

13 + 15 + 17 + 19 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 1 + 3 + 5 + 7 + 9 + 11 {\color{#3D99F6}{13 + 15 + 17 + 19}} \ \ {\large{=}} \ \ \begin{array} {c} {\color{#D61F06}{1}} \\ {\color{#D61F06}{+ \ 3 + 5}} \\ {\color{#D61F06}{+ \ 7 + 9 + 11}} \\ {\color{#3D99F6}{+ \ 13 + 15 + 17 + 19}} \end{array} \ \ {\large{-}} \ \ \begin{array} {c} {\color{#D61F06}{1}} \\ {\color{#D61F06}{+ \ 3 + 5}} \\ {\color{#D61F06}{+ \ 7 + 9 + 11}} \end{array}

The sum of all of the numbers in the table is the sum of the first n n odd numbers, which is n 2 n^2 . We need a way to find the n th n^{\text{th}} odd number - that is, the last number on each row - so that we can sum up the first n n numbers on the table. Let O n O_n denote the last number on the n th n^{\text{th}} row, and T n T_n the n th n^{\text{th}} triangular number. We observe that O n = T n O_n = T_n . For instance,

1 1 st row The first triangular number is 1 1 is the first odd number 3 + 5 2 nd row The second triangular number is 3 5 is the third odd number 7 + 9 + 11 3 rd row The third triangular number is 6 11 is the sixth odd number 13 + 15 + 17 + 19 4 th row The fourth triangular number is 10 19 is the tenth odd number \begin{array} {c} {\color{#3D99F6}{1}} & \small {\color{#D61F06}{1^{\text{st}}}} \ \text{row} \implies \ \text{The} \ {\color{#D61F06}{\text{first}}} \ \text{triangular number is} \ \ {\color{#20A900}{1}} \implies \ {\color{#3D99F6}{1}} \ \text{is the} \ {\color{#20A900}{\text{first}}} \ \text{odd number} \\ 3 + {\color{#3D99F6}{5}} & \small {\color{#D61F06} 2^{\text{nd}}} \ \text{row} \ \implies \ \text{The} \ {\color{#D61F06}{\text{second}}} \ \text{triangular number is} \ {\color{#20A900}{3}} \ \implies \ {\color{#3D99F6}{5}} \ \text{is the} \ {\color{#20A900}{\text{third}}} \ \text{odd number} \\ 7 + 9 + {\color{#3D99F6}{11}} & \small {\color{#D61F06}{3^{\text{rd}}}} \ \text{row} \implies \ \text{The} \ {\color{#D61F06}{\text{third}}} \ \text{triangular number is} \ \ {\color{#20A900}{6}} \ \implies \ {\color{#3D99F6}{11}} \ \text{is the} \ {\color{#20A900}{\text{sixth}}} \ \text{odd number} \\ 13 + 15 + 17 + {\color{#3D99F6}{19}} & \small {\color{#D61F06}{4^{\text{th}}}} \ \text{row} \implies \ \text{The} \ {\color{#D61F06}{\text{fourth}}} \ \text{triangular number is} \ \ {\color{#20A900}{10}} \ \implies \ {\color{#3D99F6}{19}} \ \text{is the} \ {\color{#20A900}{\text{tenth}}} \ \text{odd number} \end{array}

Since the sum of the first n n odd numbers is n 2 n^2 , then ( O n ) 2 = ( T n ) 2 \left(O_n\right)^2 = \left(T_n\right)^2 .

Let the sum of the numbers in the tenth row be S 10 S_{10} . Combining our first and second observations, we have

S 10 = ( O 10 ) 2 ( O 9 ) 2 = ( T 10 ) 2 ( T 9 ) 2 T 10 = 10 11 2 = 55 , T 9 = 9 10 2 = 45 = 5 5 2 4 5 2 = ( 55 45 ) ( 55 + 45 ) = 10 100 = 10000 \displaystyle \begin{aligned} S_{10} & = \left(O_{10}\right)^2 - \left(O_9\right)^2 \\ & = \left(T_{10}\right)^2 - \left(T_9\right)^2 & \small \color{#3D99F6} T_{10} = \frac{10 \cdot 11}{2} = 55 \ , \ T_9 = \frac{9 \cdot 10}{2} = 45 \\ & = 55^2 - 45^2 \\ & = (55 - 45)(55 + 45) \\ & = 10 \cdot 100 \\ & = \boxed{10000} \end{aligned}

Thank you, nicely done. You provided another solution that is logical and neat, but there is a typo in the answer.

Hana Wehbi - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...