Terrible equations!

Algebra Level 4

If x = 5 + 2 + 5 2 5 + 1 + 5 + 2 + 5 2 2 5 + 1 3 2 2 x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}+\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{2\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}

then find the value of x 2 x^{2} .

3 + 2 2 2 \frac{3+2\sqrt{2}}{2} 3 2 2 \frac{3-\sqrt{2}}{2} 3 + 2 2 \frac{3+\sqrt{2}}{2} 3 2 2 2 \frac{3-2\sqrt{2}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Saurabh Mallik
Aug 31, 2014

Firstly consider all the values as variables which will make the problem easy to solve.

Let:

l = 5 + 2 l=\sqrt{\sqrt{5}+2}

m = 5 2 m=\sqrt{\sqrt{5}-2}

n = 5 + 1 n=\sqrt{\sqrt{5}+1}

So, x = 5 + 2 + 5 2 5 + 1 + 5 + 2 + 5 2 2 5 + 1 3 2 2 = l + m n + l + m 2 n 3 2 2 x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}+\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{2\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}=\frac{l+m}{n}+\frac{l+m}{2n}-\sqrt{3-2\sqrt{2}}

Taking LCM of n n and 2 n 2n = 2 n 2n , we get:

l + m n + l + m 2 n 3 2 2 = 2 l + 2 m + l + m 2 n 3 2 2 \frac{l+m}{n}+\frac{l+m}{2n}-\sqrt{3-2\sqrt{2}}=\frac{2l+2m+l+m}{2n}-\sqrt{3-2\sqrt{2}}

3 l + 3 m 2 n 3 2 2 = 3 ( l + m ) 2 n 3 2 2 \frac{3l+3m}{2n}-\sqrt{3-2\sqrt{2}}=\frac{3(l+m)}{2n}-\sqrt{3-2\sqrt{2}}

Putting back the values, we get:

x = 3 ( l + m ) 2 n 3 2 2 = 3 ( 5 + 2 + 5 2 ) 2 5 + 1 2 + 1 2 2 x=\frac{3(l+m)}{2n}-\sqrt{3-2\sqrt{2}}=\frac{3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})}{2\sqrt{\sqrt{5}+1}}-\sqrt{2+1-2\sqrt{2}}

x = 3 ( 5 + 2 + 5 2 ) 2 5 + 1 ( 2 1 ) 2 x=\frac{3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})}{2\sqrt{\sqrt{5}+1}}-\sqrt{(\sqrt{2}-1)^{2}}

x = 3 ( 5 + 2 + 5 2 ) 2 5 + 1 ( 2 1 ) x=\frac{3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})}{2\sqrt{\sqrt{5}+1}}-(\sqrt{2}-1)

x = 3 ( 5 + 2 + 5 2 ) 2 5 + 1 2 + 1 x=\frac{3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})}{2\sqrt{\sqrt{5}+1}}-\sqrt{2}+1

x + 2 1 = 3 ( 5 + 2 + 5 2 ) 2 5 + 1 x+\sqrt{2}-1=\frac{3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})}{2\sqrt{\sqrt{5}+1}}

Squaring both sides, we get:

( x + 2 1 ) 2 = ( 3 ( 5 + 2 + 5 2 ) 2 5 + 1 ) 2 (x+\sqrt{2}-1)^{2}=(\frac{3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})}{2\sqrt{\sqrt{5}+1}})^{2}

( x + 2 1 ) 2 = ( 3 ( 5 + 2 + 5 2 ) ) 2 ( 2 5 + 1 ) 2 (x+\sqrt{2}-1)^{2}=\frac{(3(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}))^{2}}{(2\sqrt{\sqrt{5}+1})^{2}}

( x + 2 1 ) 2 = 9 ( 5 + 2 + 5 2 ) 2 4 ( 5 + 1 ) (x+\sqrt{2}-1)^{2}=\frac{9(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^{2}}{4(\sqrt{5}+1)}

( x + 2 1 ) 2 = 9 ( 5 + 2 + 5 2 + 2 ( 5 + 2 ) ( 5 2 ) ) 4 ( 5 + 1 ) (x+\sqrt{2}-1)^{2}=\frac{9(\sqrt{5}+2+\sqrt{5}-2+2\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)})}{4(\sqrt{5}+1)}

( x + 2 1 ) 2 = 9 ( 2 5 + 2 5 4 ) 4 ( 5 + 1 ) (x+\sqrt{2}-1)^{2}=\frac{9(2\sqrt{5}+2\sqrt{5-4})}{4(\sqrt{5}+1)}

( x + 2 1 ) 2 = 9 ( 2 5 + 2 ) 4 ( 5 + 1 ) (x+\sqrt{2}-1)^{2}=\frac{9(2\sqrt{5}+2)}{4(\sqrt{5}+1)}

( x + 2 1 ) 2 = 18 ( 5 + 1 ) 4 ( 5 + 1 ) (x+\sqrt{2}-1)^{2}=\frac{18(\sqrt{5}+1)}{4(\sqrt{5}+1)}

( x + 2 1 ) 2 = 18 4 (x+\sqrt{2}-1)^{2}=\frac{18}{4}

( x + 2 1 ) 2 = 9 2 (x+\sqrt{2}-1)^{2}=\frac{9}{2}

x + 2 1 = 3 2 x+\sqrt{2}-1=\frac{3}{\sqrt{2}}

x = 3 2 2 + 1 x=\frac{3}{\sqrt{2}}-\sqrt{2}+1

x = 3 2 2 2 + 1 x=\frac{3\sqrt{2}}{2}-\sqrt{2}+1

x = 3 2 2 2 + 2 2 x=\frac{3\sqrt{2}-2\sqrt{2}+2}{2}

x = 2 + 2 2 x=\frac{\sqrt{2}+2}{2}

Again, squaring both sides, we get:

x 2 = ( 2 + 2 2 ) 2 x^{2}=(\frac{\sqrt{2}+2}{2})^{2}

x 2 = ( 2 + 2 ) 2 4 x^{2}=\frac{(\sqrt{2}+2)^{2}}{4}

x 2 = ( 2 + 4 + 4 2 ) 4 x^{2}=\frac{(2+4+4\sqrt{2})}{4}

x 2 = ( 6 + 4 2 ) 4 x^{2}=\frac{(6+4\sqrt{2})}{4}

x 2 = 2 ( 3 + 2 2 ) 4 x^{2}=\frac{2(3+2\sqrt{2})}{4}

x 2 = 3 + 2 2 2 x^{2}=\frac{3+2\sqrt{2}}{2}

Thus, the answer is: x 2 = 3 + 2 2 2 x^{2}=\boxed{\frac{3+2\sqrt{2}}{2}}

Great solution! Isn't it guys?

Saurabh Mallik - 6 years, 9 months ago

calculator use karke kiya hoon

CH Nikhil - 6 years, 9 months ago

Log in to reply

Koi question to khud kar. Par kon se calculator me kiya?

Saurabh Mallik - 6 years, 8 months ago

mister.saurabh mallik easy toh tha question.

manas vema - 6 years, 9 months ago

Log in to reply

If you keep 5 to 6 accounts, then definitely you can know the answer as well as the solution and post the right answer from another account.

Saurabh Mallik - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...