Tessellate S.T.E.M.S (2019) - Mathematics - Category B - Set 3 - Objective Problem 2

Algebra Level 3

Suppose that x x , y y and z z are three positive numbers that satisfy the equations x y z = 1 xyz=1 ; x + 1 z = 5 x+\frac{1}{z}=5 and y + 1 x = 29 y+\frac{1}{x}=29 . Then z + 1 y = m n z+\frac{1}{y}=\frac{m}{n} , where m m and n n are relatively prime positive integers. Find m + n m+n .


This problem is a part of Tessellate S.T.E.M.S. (2019)

5 4 6 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Math Nerd 1729
Dec 22, 2018

x + 1 z = 5 x+\frac { 1 }{ z } =5 [Given]

y + 1 x = 29 y+\frac { 1 }{ x } =29 [Given]

Let z + 1 y = A z+\frac { 1 }{ y } =A

Multiplying the three equations gives us:

x y z + 1 x y z + x + y + z + 1 x + 1 y + 1 z = 145 A xyz+\frac { 1 }{ xyz } +x+y+z+\frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z } =145A

Rearranging:

( x y z + 1 x y z ) + ( x + 1 z ) + ( y + 1 x ) + ( z + 1 y ) = 145 A \left( xyz+\frac { 1 }{ xyz } \right) + \left( x+\frac { 1 }{ z } \right) +\left( y+\frac { 1 }{ x } \right)+\left( z+\frac { 1 }{ y } \right) =145A

Substituting x y z = 1 xyz=1 , x + 1 z = 5 x+\frac { 1 }{ z } =5 , y + 1 x = 29 y+\frac { 1 }{ x } =29 [All given], and z + 1 y = A z+\frac { 1 }{ y } =A [Our earlier assumption]:

( 1 + 1 1 ) + 5 + 29 + A = 145 A \left( 1+\frac { 1 }{ 1 } \right) +5+29+A=145A

Simplifying:

36 + A = 145 A 36+A=145A

Solving for A:

A = 1 4 A=\frac { 1 }{ 4 }

Remember that our assumption is:

A = z + 1 y A=z+\frac { 1 }{ y } which is said to equal m n \frac { m }{ n }

Thus, m n = 1 4 \frac { m }{ n } =\frac { 1 }{ 4 }

Therefore, m = 1 m=1 and n = 4 n=4

Since we are asked for m + n m+n , the answer is therefore 1 + 4 = 5 1+4=\boxed { 5 }

Parth Sankhe
Nov 11, 2018

x z + 1 = 5 z xz+1=5z

1 y + 1 = 5 z \frac {1}{y}+1=5z

1 + y = 5 z y = 5 x 1+y=5zy=\frac {5}{x} , y + 1 x = 29 y+\frac {1}{x}=29

Two equations, two variables ( y y and 1 x \frac {1}{x} )

•••

y = 24 , 1 x = 5 y=24, \frac {1}{x}=5

Put values in first equation to get z = 5 24 z=\frac {5}{24}

z + 1 y = 1 4 z+\frac {1}{y}=\frac {1}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...