Tessellate S.T.E.M.S (2019) - Mathematics - Category C - Set 3 - Objective Problem 2

Calculus Level 3

a a + 8 e 2 x e x 2 d x \large \int_a^{a+8}e^{-2x}e^{-x^2}dx

Find the real number a a such that the integral above attains its maximum.

-5 5 9 2 \dfrac{-9}{2} -4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 12, 2018

Let f ( x ) = e 2 x e x 2 = e ( x 2 + 2 x ) f(x) = e^{-2x}e^{-x^2} = e^{-(x^2+2x)} and F ( x ) = f ( x ) d x F(x) = \displaystyle \int f(x) \ dx . Then we have the integral I = a a + 8 f ( x ) d x = F ( a + 8 ) F ( a ) I = \displaystyle \int_a^{a+8} f(x) \ dx = F(a+8) - F(a) and I I is maximum when F ( a + 8 ) F ( a ) = f ( a + 8 ) f ( a ) = 0 F'(a+8) - F'(a) = f(a+8) - f(a) = 0 or

e ( ( a + 8 ) 2 + 2 ( a + 8 ) ) e ( a 2 + 2 a ) = 0 e ( ( a + 8 ) 2 + 2 ( a + 8 ) ) = e ( a 2 + 2 a ) ( a + 8 ) 2 + 2 ( a + 8 ) = a 2 + 2 a a 2 + 16 a + 64 + 2 a + 16 = a 2 + 2 a 16 a = 80 a = 5 \begin{aligned} e^{-((a+8)^2+2(a+8))} - e^{-(a^2+2a)} & = 0 \\ \implies e^{-((a+8)^2+2(a+8))} & = e^{-(a^2+2a)} \\ (a+8)^2+2(a+8) & = a^2+2a \\ a^2 + 16a+64 + 2a +16 & = a^2 + 2a \\ \implies 16a & = - 80 \\ a & = - 5 \end{aligned}

We note that F ( a + 8 ) F ( a ) = f ( a + 8 ) f ( a ) = ( 2 a + 18 ) f ( a + 8 ) + ( 2 a + 2 ) f ( a ) F''(a+8) - F''(a) = f'(a+8) - f'(a) = - (2a+18)f(a+8) + (2a+2)f(a) . When a = 5 a=-5 , F ( 3 ) F ( 5 ) = 16 f ( 5 ) < 0 F''(3) - F''(-5) = - 16 f(-5) < 0 . Therefore, I I is maximum when a = 5 a= \boxed{-5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...