Tessellate S.T.E.M.S - Physics - College - Set 1 - Problem 5

Level 2

Find the first order vacuum perturbation of a potential of the form V = exp ( a a / λ ) V = \exp(a a^{\dagger}/\lambda) , where a a^{\dagger} is a creation operator and a a is an annihilation operator. λ \lambda is dimensionless.

This problem is a part of Tessellate S.T.E.M.S.

e λ + 1 / 2 e^{\lambda + 1/2} e 1 / λ + 1 / 2 e^{1/\lambda + 1/2} e λ e^{\lambda} e 1 / λ e^{1/\lambda}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Caio Almeida
Mar 30, 2018

Consider the energy eigenstates for the harmonic oscillator, n \ket{n} . The vacuum state is given by 0 \ket{0} , such that a ^ 0 = 0 \hat{a}\ket{0} = \ket{0} .

Given the 'perturbed' Hamiltonian H ^ = H ^ 0 + H ^ \hat{H} = \hat{H}_{0} + \hat{H}^{\prime} , where H ^ 0 \hat{H}_{0} represents the harmonic oscillator Hamiltonian and H ^ = exp ( a ^ a ^ / λ ) \hat{H}^{\prime} = \exp (\hat{a}\hat{a}^{\dagger} / \lambda) , we calculate the first order correction to the vacuum state energy as E 0 ( 1 ) = 0 H ^ 0 E^{(1)}_{0} = \bra{0}\hat{H}^{\prime}\ket{0} . In this problem, it is a straightforward calculation,

E 0 ( 1 ) = 0 H ^ 0 = 0 exp ( a ^ a ^ λ ) 0 = 0 [ k = 0 1 k ! ( a ^ a ^ λ ) k ] 0 = 0 [ k = 0 ( 1 / λ ) k k ! ( a ^ a ^ ) k 0 ] \displaystyle E^{(1)}_{0} = \bra{0}\hat{H}^{\prime}\ket{0} = \bra{0}\exp \left(\frac{\hat{a}\hat{a}^{\dagger}}{\lambda}\right)\ket{0} = \bra{0} \left[ \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{\hat{a}\hat{a}^{\dagger}}{\lambda}\right)^{k} \right]\ket{0} = \bra{0} \left[ \sum_{k=0}^{\infty} \frac{(1/\lambda)^{k}}{k!}\left(\hat{a}\hat{a}^{\dagger}\right)^{k}\ket{0} \right] .

It can be easily shown that a ^ a ^ n = ( n + 1 ) n \hat{a}\hat{a}^{\dagger}\ket{n} = (n+1)\ket{n} , i.e. the states n \ket{n} are eigenvectors of the a ^ a ^ \hat{a}\hat{a}^{\dagger} operator. Therefore, it follows that ( a ^ a ^ ) k n = ( n + 1 ) k n \left(\hat{a}\hat{a}^{\dagger}\right)^{k}\ket{n} = (n+1)^{k}\ket{n} . In particular, we have ( a ^ a ^ ) k 0 = ( 1 ) k 0 = 0 \left(\hat{a}\hat{a}^{\dagger}\right)^{k}\ket{0} = (1)^{k}\ket{0} = \ket{0} . Applying this result in the expression above,

E 0 ( 1 ) = 0 [ k = 0 ( 1 / λ ) k k ! 0 ] = k = 0 ( 1 / λ ) k k ! 0 0 \displaystyle E^{(1)}_{0} = \bra{0} \left[ \sum_{k=0}^{\infty} \frac{(1/\lambda)^{k}}{k!}\ket{0} \right] = \sum_{k=0}^{\infty} \frac{(1/\lambda)^{k}}{k!}\langle0\ket{0} .

Assuming the state is normalized, 0 0 = 1 \langle0\ket{0} = 1 ,

E 0 ( 1 ) = k = 0 ( 1 / λ ) k k ! \displaystyle E^{(1)}_{0} = \sum_{k=0}^{\infty} \frac{(1/\lambda)^{k}}{k!} E 0 ( 1 ) = e 1 / λ \displaystyle \therefore \hspace{2pt} \boxed{E^{(1)}_{0} = e^{1/\lambda}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...