Test every square

A square number is divided by 6. Which of the following could not be the remainder?

0 2 1 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arulx Z
Mar 8, 2016

Only possible modulo 6 residues are 0, 1, 2, 3, 4 and 5. On squaring them,

0 2 0 ( mod 6 ) 1 2 1 ( mod 6 ) 2 2 4 ( mod 6 ) 3 2 3 ( mod 6 ) 4 2 4 ( mod 6 ) 5 2 1 ( mod 6 ) { 0 }^{ 2 }\equiv 0\quad \left( \text{mod 6} \right) \\ { 1 }^{ 2 }\equiv 1\quad \left( \text{mod 6} \right) \\ { 2 }^{ 2 }\equiv 4\quad \left( \text{mod 6} \right) \\ { 3 }^{ 2 }\equiv 3\quad \left( \text{mod 6} \right) \\ { 4 }^{ 2 }\equiv 4\quad \left( \text{mod 6} \right) \\ { 5 }^{ 2 }\equiv 1\quad \left( \text{mod 6} \right)

Since 2 doesn't show up, the answer is 2.

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...