There is a quick way to solve it!

Find the largest 6 6 -digit number that is divisible by 7, 10, 15, 21 and 28.


The answer is 999600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Armain Labeeb
Jul 11, 2016

The largest 6 6 -digit number is 999600 \boxed{999600} .

The largest k k -digit number that is divisible by a 1 , a 2 , a 3 , a 4 , a 5 , a n { a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 },{ a }_{ 4 },{ a }_{ 5 },\dots { a }_{ n } can be expressed as:

Smallest (k+1) digit number L.C.M of a 1 , a 2 , a 3 , a 4 , a 5 , a n L.C.M of a 1 , a 2 , a 3 , a 4 , a 5 , a n \left\lfloor \frac { \text{Smallest (k+1) digit number} }{ { \text{ L.C.M of }a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 },{ a }_{ 4 },{ a }_{ 5 },\dots { a }_{ n } } \right\rfloor \cdot \,\,\text{ L.C.M of }{a}_{ 1 },{ a}_{ 2 },{ a}_{ 3 },{ a}_{ 4 },{ a}_{ 5 },\dots { a}_{ n}

Substituting a 1 , a 2 , a 3 , a 4 , a 5 = 7 , 10 , 15 , 21 , 28 {a }_{ 1 },{a }_{ 2 },{ a }_{ 3 },{ a }_{ 4 },{ a }_{ 5 }=7,10,15,21,28 and k = 6 k=6 we have,

Smallest 7 digit number L.C.M of 7, 10, 15, 21, 28 L.C.M of 7, 10, 15, 21, 28 = 1000000 420 420 = 2380.952381 420 = 2380 420 = 999600 \begin{aligned} & \left\lfloor \frac {\text { Smallest 7 digit number } }{ \text{L.C.M of 7, 10, 15, 21, 28} } \right\rfloor \cdot \, \, \text{L.C.M of 7, 10, 15, 21, 28} \\=&\left\lfloor \frac {\text { 1000000 } }{ 420 } \right\rfloor \cdot \, \, 420\\=&\left\lfloor 2380.952381\right\rfloor\cdot\,\,420\\=&2380\,\,\cdot\,\,420\\=&\boxed{999600}\end{aligned}

That's how I did it, but is this a formula that you used or else?

John Green - 4 years, 11 months ago

Log in to reply

That is a formula I used.

Armain Labeeb - 4 years, 11 months ago

Can in the above formula smallest( k+1) digit no. Be replaced with largest k digit number??

Saksham Jain - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...