Integrating Reciprocated Exponential Function!

Calculus Level 2

1 1 + e x d x = ? \large \int \dfrac1{1 + e^{-x}} \, dx = \, ?

Clarification : C C denotes the arbitrary constant of integration .

ln ( 1 e x ) + C \ln(1 - e^{-x}) + C ln ( 1 e x ) + C \ln(1 - e^x) + C ln ( 1 + e x ) + C \ln(1 + e^x) + C ln ( 1 + e x ) + C \ln(1 + e^{-x}) + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Yash Dev Lamba
Mar 16, 2016

1 1 + e x = e x 1 + e x d x \int\frac{1}{1+e^{-x}}=\int\frac{e^{x}}{1+e^{x}}dx

Take 1 + e x = t 1+e^x=t \implies e x d x = d t e^xdx=dt

e x 1 + e x d x = 1 t d t = l n t + c = l n ( 1 + e x ) + c \int\frac{e^{x}}{1+e^{x}}dx=\int\frac{1}{t}dt=ln|t|+c=ln(1+e^{x})+c

Nice solution! My method would've taken longer.

Kirubel Solomon - 5 years, 3 months ago

how did you get to that first equality?

Tiago Lima - 5 years, 2 months ago

Log in to reply

since e x = 1 e x e^{-x}=\frac{1}{e^{x}}

Yash Dev Lamba - 5 years, 2 months ago
Chew-Seong Cheong
Mar 16, 2016

Similar solution and my presentation is as follows:

1 1 + e x d x = e x e x + 1 d x = d d x ln ( 1 + e x ) d x = d ( ln ( 1 + e x ) ) = ln ( 1 + e x ) + C \begin{aligned} \int \frac{1}{1+e^{-x}} dx & = \int \frac{e^x}{e^x + 1} dx \\ & = \int \frac{d}{\color{#D61F06}{dx}} \ln (1+e^x) \color{#D61F06}{dx} \\ & = \int d (\ln (1+e^x)) \\ & = \boxed{\ln (1+e^x) + C} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...