Test your skills 2

Calculus Level 5

Find the area of the region bounded by the parabola ( y 2 ) 2 = x 1 (y-2)^{2}=x-1 , the tangent to it at the point where the ordinate is 3 ,and the x x -axis.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x = ( 3 2 ) 2 + 1 = 2 , t h e p o i n t o f t a n g e n t c y i s T ( 2 , 3 ) . S l o p e o f t h e t a n g e n t m = d y d x = 1 2 ( 3 2 ) = 1 2 . t h e t a n g e n t i s y = 1 2 ( x 2 ) , x = 2 ( y 3 ) + 2. δ A = ( x p x t ) δ ( y ) = { 2 ( y 3 ) + 2 { ( y 2 ) 2 + 1 } } δ ( y ) . A = 0 3 { 2 ( y 3 ) + 2 { ( y 2 ) 2 + 1 } } d y = 9 x=(3-2)^2+1=2,\ \implies \ \ the\ point\ of\ tangentcy\ \ is\ T(2,3) .\\ Slope\ of\ the\ tangent\ m=\dfrac{dy}{dx}=\dfrac 1 {2(3-2)}=\frac 1 2.\\ \therefore\ the\ tangent\ is\ y=\frac 1 2(x-2),\ \ \implies\ x=2(y-3)+2.\\ \delta A=(x_p-x_t)\delta(y)=- \left \{2(y-3)+2- \{(y-2)^2+1\} \right\}*\delta(y).\\ \displaystyle A\ =\ \int_0^3\ - \left \{2(y-3)+2- \{(y-2)^2+1\} \right\}*dy= \Large\ \ \color{#D61F06}{9}
The minus signs in the last two expressions are to correct my previous mistakes .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...