How many numbers of the form 3 0 a 0 b 0 3 , where a and b are single digits, are divisible by 13?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
3 0 a 0 b 0 3 ≡ 3 0 0 0 0 0 3 + 1 0 0 0 0 a + 1 0 0 b (mod 13) ≡ 6 + 3 a − 4 b ) (mod 13) ⟹ 6 + 3 a − 4 b = 1 3 n − 6 ∵ 3 a = 2 7 a n d − 4 a = − 3 6 m a x i m u m v a l u e s f o r a a n d b . W e m a k e a t a b l e f o r 3 a a n d − 4 b f o r a , b f r o m 0 t o 9 I n s p e c t i n g t h e t a b l e a n d o b s e r v i n g w h e r e w e g e t 3 a − 4 b = 1 3 n − 6 , w h e r e n i s a n i n t e g e r . F o r e v e r y a , b , b e t w e e n 0 t o 9 3 a a n d − 4 b r a n g e s f o r b = 9 t o a = 9 , t h a t i s f r o m − 3 2 t o + 2 7 . T h i s l i m i t s n t o b e w i t h i n − 2 t o + 2 . A s s h o w n b e l o w i n t h e N o t e f o l l o w i n g s a t i s f i e s o u r c o n d i t i o n , t h a t i s d i v i s i b i l i t y b y 1 3 . ( a , b ) = ( 0 , 8 ) / ( 2 , 3 ) / ( 3 , 7 ) / ( 5 , 2 ) / ( 6 , 6 ) / ( 8 , 1 ) / ( 9 , 5 ) . T h e s e a r e 7 v a l u e s . N o t e : F o r a = 0 t o 9 , 3 a = 3 . . . . . 6 . . . . . 9 . . . . . 1 2 . . . . . 1 5 . . . . . 1 8 . . . . . 2 1 . . . . . 2 4 . . . . . 2 7 . F o r b = 0 t o 9 , − 4 b = − 4 . . . . − 8 . . . . − 1 2 . . . . − 1 6 . . . . − 2 0 . . . . − 2 4 . . . . − 2 8 . . . . − 3 2 . . . . − 3 6 3 a − 4 b = 1 3 n − 6 , ∴ f o r n = − 2 , 1 3 n − 6 = − 3 2 . . . . . . . . . . . f r o m v a l u e s o f a , a n d b a b o v e a = 0 a n d b = 8 . O n l y p o s s i b l e . ∴ f o r n = − 1 , 1 3 n − 6 = − 1 9 . . . . . . . . . . . f r o m v a l u e s o f a , a n d b a b o v e a = 3 a n d b = 7 . O n l y p o s s i b l e . ∴ f o r n = 0 , 1 3 n − 6 = − 6 . . . . . . . . . . . f r o m v a l u e s o f a , a n d b a b o v e a = 2 a n d b = 3 . a n d a = 6 a n d b = 6 O n l y p o s s i b l e . ∴ f o r n = + 1 , 1 3 n − 6 = + 7 . . . . . . . . . . . f r o m v a l u e s o f a , a n d b a b o v e a = 5 a n d b = 2 . a n d a = 9 a n d b = 5 O n l y p o s s i b l e . ∴ f o r n = + 2 , 1 3 n − 6 = 2 0 . . . . . . . . . . . f r o m v a l u e s o f a , a n d b a b o v e a = 8 a n d b = 1 . O n l y p o s s i b l e . S o ( a , b ) = ( 0 , 8 ) / ( 2 , 3 ) / ( 3 , 7 ) / ( 5 , 2 ) / ( 6 , 6 ) / ( 8 , 1 ) / ( 9 , 5 ) . I n t e r e s t i n g ! ! ! ( 0 , 8 ) , ( 3 , 7 ) , ( 6 , 6 ) , ( 9 , 5 ) ( 1 , X ) , ( 4 , X ) , ( 7 , X ) , ( 2 , 3 ) , ( 5 , 2 ) , ( 8 , 1 )
Problem Loading...
Note Loading...
Set Loading...
3 0 a 0 b 0 3 ≡ 3 0 0 0 0 0 3 + 1 0 0 0 0 a + 1 0 0 b (mod 13) ≡ 6 + 3 a + 9 b (mod 13) ≡ 3 ( 2 + a + 3 b ) (mod 13)
Therefore, we have:
2 + a + 3 b ⟹ 3 b = 1 3 n = 1 3 n − 2 − a where n is non-negative integer.
Since 0 ≤ b ≤ 9 ⟹ 0 ≤ 1 3 n − 2 − a ≤ 2 7 ⟹ 0 ≤ 1 3 n − 2 − 9 ⟹ n ≥ 1 also 1 3 n − 2 − 0 ≤ 2 7 ⟹ n ≤ 2 . Therefore, n = 1 , 2 .
From 3 b = 1 3 n − 2 − a ,
⟹ b = 3 1 3 n − 2 − a = ⎩ ⎪ ⎨ ⎪ ⎧ n = 1 n = 2 ⟹ b = 3 1 1 − a ⟹ b = 3 2 4 − a ⟹ ( a , b ) = ( 2 , 3 ) , ( 5 , 2 ) , ( 8 , 1 ) ⟹ ( a , b ) = ( 0 , 8 ) , ( 3 , 7 ) , ( 6 , 6 ) , ( 9 , 5 )
Therefore, there are 7 such numbers.