Tetrahedron Craze!

Level pending

Let ( 0 < r < 1 ) (0 < r < 1) and A : ( 0 , 0 , 0 ) A:(0,0,0) .

A B C \triangle{ABC} is an equilateral triangle with a side length of a a . The point P P with coordinates ( r a , r a , 0 ) (ra,ra,0) lies inside A B C \triangle{ABC} and the height of the tetrahedron is P Q \overline{PQ} .

Let m Q T P = θ , m Q A C = λ m\angle{QTP} = \theta, \:\ m\angle{QAC} = \lambda and m Q A B = γ m\angle{QAB} = \gamma

(1): Find the value of θ \theta and λ \lambda (in degrees) that minimizes the the triangular face Q A C QAC when the volume is held constant.

(2): Using the values of a a and h = P Q h = \overline{PQ} in (1) find the value of γ \gamma (in degrees).

Express the result as θ + λ + γ \theta + \lambda + \gamma to five decimal places..


The answer is 161.65609.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 23, 2018

For triangular face Q A C : QAC:

A = A Q A C = a 2 Q T = a 2 h 2 + a 2 r 2 A = A_{QAC} = \dfrac{a}{2}\overline{QT} = \dfrac{a}{2}\sqrt{h^2 + a^2 r^2}

V = 1 4 3 a 2 h 2 = k A ( a ) = 1 2 48 k 2 + a 6 r 2 a V = \dfrac{1}{4\sqrt{3}} a^2 h^2 = k \implies A(a) = \dfrac{1}{2}\dfrac{\sqrt{48k^2 + a^6 r^2}}{a} \implies d A d a = 1 2 2 r 2 a 6 48 k 2 a 2 48 k 2 + a 2 r 2 \dfrac{dA}{da} = \dfrac{1}{2}\dfrac{2r^2 a^6 - 48 k^2}{a^2\sqrt{48k^2 + a^2 r^2}}
a 0 a = ( 24 k r ) 1 3 h = 2 3 ( k r 2 3 ) 1 3 a \neq 0 \implies a = (\dfrac{\sqrt{24}k}{r})^{\frac{1}{3}} \implies h = 2\sqrt{3}(\dfrac{kr^2}{3})^{\frac{1}{3}}

tan ( θ ) = h a r = 2 θ 54.7356 1 \implies \tan(\theta) = \dfrac{h}{ar} =\sqrt{2} \implies \boxed{\theta \approx 54.73561^\circ}

and

tan ( λ ) = a 2 r 2 + h 2 a r = \tan(\lambda) = \dfrac{\sqrt{a^2 r^2 + h^2}}{ar} = 48 k 2 + a 6 r 2 a 3 r = 3 \dfrac{\sqrt{48k^2 + a^6r^2}}{a^3 r} = \sqrt{3} λ = 6 0 \implies \boxed{\lambda = 60^\circ}

For triangular face Q A B : QAB:

u = a r i + a r j + h k \vec{u} = ar\vec{i} + ar\vec{j} + h\vec{k}

v = a 2 i + 3 2 a j + 0 k \vec{v} = \dfrac{a}{2}\vec{i} + \dfrac{\sqrt{3}}{2}a\vec{j} + 0\vec{k}

u X v = 3 2 a h i + a h 2 j + 3 1 2 a 2 r k \vec{u} X \vec{v} = -\dfrac{\sqrt{3}}{2}ah\vec{i} + \dfrac{ah}{2}\vec{j} + \dfrac{\sqrt{3} - 1}{2}a^2r\vec{k}

u X v = a 2 4 h 2 + ( 4 2 3 ) r 2 a 2 , u = 2 r 2 a 2 + h 2 \implies |\vec{u} X \vec{v}| = \dfrac{a}{2}\sqrt{4h^2 + (4 - 2\sqrt{3})r^2 a^2}, \:\ |\vec{u}| = \sqrt{2r^2a^2 + h^2} and v = a |\vec{v}| = a

sin ( γ ) = 4 h 2 + ( 4 2 3 ) r 2 a 2 2 2 r 2 a 2 + h 2 = \implies \sin(\gamma) = \dfrac{\sqrt{4h^2 + (4 - 2\sqrt{3})r^2 a^2}}{2\sqrt{2r^2 a^2 + h^2}} = 6 3 8 γ 46.9204 8 \sqrt{\dfrac{6 - \sqrt{3}}{8}} \implies \boxed{\gamma \approx 46.92048^\circ}

θ + λ + γ = 161.6560 9 \implies \theta + \lambda + \gamma = \boxed{161.65609^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...