Tetrahedron Incenter

Geometry Level 5

Given an irregular tetrahedron with vertices A ( 10 , 0 , 0 ) , B ( 5 , 12 , 0 ) , C ( 5 , 2 , 0 ) , D ( 0 , 0 , 10 ) A(10, 0, 0) , B(5, 12, 0) , C(-5, 2, 0) , D(0, 0, 10) , it has a unique sphere inside it touching its four faces. This sphere is called the insphere, and its center is the incenter. For the given tetrahedron, find the coordinates of the incenter I I , then enter the distance between the origin and point I I as your answer.


The answer is 4.76.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Dec 6, 2020

Moving on from the solution below, I claim that the position vector of the incentre I I of a tetrahedron A B C D ABCD is expressible in terms of the position vectors of the vertices A , B , C , D A,B,C,D and of the areas of its four faces as follows: p = B C D a + A C D b + A B D c + A B C d B C D + A C D + A B D + A B C \mathbf{p} \; = \; \frac{BCD \mathbf{a} + ACD \mathbf{b} + ABD \mathbf{c} + ABC \mathbf{d}}{BCD + ACD + ABD + ABC}

This is the three-dimensional analogue of the better-known result for the incentre of a triangle. Here is the proof. Splitting the tetrahedron A B C D ABCD into the four tetrahedra A B C I ABCI , A B D I ABDI , A C D I ACDI , B C D I BCDI , all with bases one of the faces of the original tetrahedron and with height r r , the inradius, we deduce that 1 3 ( A B C + A B D + A C D + B C D ) r = V \tfrac13(ABC + ABD + ACD + BCD)r \; = \; V where V V is the volume of the tetrahedron A B C D ABCD . The equation of the plane A B C ABC (for example) is ( r a ) ( a × b + b × c + c × a ) = 0 \big(\mathbf{r} - \mathbf{a}\big) \cdot \big(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}\big) \; = \; 0 (note that a × b + b × c + c × a = ( b a ) × ( c a ) \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) ) and so the distance of I I from the face A B C ABC is ( p a ) ( a × b + b × c + c × a ) a × b + b × c + c × a = ( p a ) ( a × b + b × c + c × a ) 2 A B C \left|\frac{(\mathbf{p} - \mathbf{a})\cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})}{|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}|}\right| \; = \; \frac{|(\mathbf{p} - \mathbf{a})\cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})|}{2ABC} Now p ( a × b + b × c + c × a ) = B C D + A B D + A C D A B C + A B D + A C D + B C D a ( b × c ) + A B C A B C + A B D + A C D + B C D d ( a × b + b × c + c × a ) = a ( b × c ) + A B C A B C + A B D + A C D + B C D ( d a ) ( a × b + b × c + c × a ) ( p a ) ( a × b + b × c + c × a ) = A B C A B D + A B D + A C D + B C D ( d a ) ( a × b + b × c + c × a ) ( p a ) ( a × b + b × c + c × a ) = 6 A B C V A B C + A B D + A C D + B C D = 2 r A B C \begin{aligned} \mathbf{p} \cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) & = \; \frac{BCD + ABD + ACD}{ABC + ABD + ACD + BCD}\mathbf{a}\cdot(\mathbf{b} \times \mathbf{c}) + \frac{ABC}{ABC + ABD + ACD + BCD}\mathbf{d} \cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) \\ & = \; \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) + \frac{ABC}{ABC+ABD+ACD+BCD}(\mathbf{d}-\mathbf{a})\cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) \\ (\mathbf{p}-\mathbf{a})\cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) & = \; \frac{ABC}{ABD + ABD + ACD + BCD} (\mathbf{d}-\mathbf{a})\cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) \\ |(\mathbf{p}-\mathbf{a})\cdot(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})| & = \; \frac{6ABC\ V}{ABC + ABD + ACD + BCD} \; = \; 2rABC \end{aligned} which shows that the distance from I I to A B C ABC is r r . Similar calculations show that the distance of I I to the other three faces is also r r , and hence that I I is indeed the incentre and r r the inradius.

Calculating the coordinates of the incentre is now elementary. (and it turns out the the formulae obtained below can be substantially simplified). We have p = ( 5 233 + 10 249 5 313 17 + 233 + 249 + 313 , 12 233 + 2 313 17 + 233 + 249 + 313 , 170 17 + 233 + 249 + 313 ) \mathbf{p} \; =\; \left(\frac{5\sqrt{233} + 10\sqrt{249} - 5\sqrt{313}}{17 + \sqrt{233}+ \sqrt{249} + \sqrt{313}}\,,\,\frac{12\sqrt{233}+2\sqrt{313}}{17 + \sqrt{233}+ \sqrt{249} + \sqrt{313}}\,,\,\frac{170}{17 + \sqrt{233}+ \sqrt{249} + \sqrt{313}}\right) from which we calculate O I = p = 4.759398680 OI = |\mathbf{p}| = \boxed{4.759398680} .


The planes A B C ABC , A B D ABD , A C D ACD and B C D BCD have inward-pointing unit normals n A B C = ( b a ) × ( c a ) ( b a ) × ( c a ) = k n A B D = ( d a ) × ( b a ) ( d a ) × ( b a ) n A C D = ( c a ) × ( d a ) ( c a ) × ( d a ) n B C D = ( d b ) × ( c b ) ( d b ) × ( c b ) \begin{array}{rclcrcl} \mathbf{n}_{ABC} & =& \displaystyle \frac{(\mathbf{b}-\mathbf{a}) \times (\mathbf{c} - \mathbf{a})}{|(\mathbf{b}-\mathbf{a}) \times (\mathbf{c} - \mathbf{a})|} \; =\; \mathbf{k}& \hspace{2cm} & \mathbf{n}_{ABD} & =& \displaystyle \frac{(\mathbf{d}-\mathbf{a}) \times (\mathbf{b} - \mathbf{a})}{|(\mathbf{d}-\mathbf{a}) \times (\mathbf{b} - \mathbf{a})|} \\[2ex] \mathbf{n}_{ACD} & =& \displaystyle \frac{(\mathbf{c}-\mathbf{a}) \times (\mathbf{d} - \mathbf{a})}{|(\mathbf{c}-\mathbf{a}) \times (\mathbf{d} - \mathbf{a})|} && \mathbf{n}_{BCD} & =& \displaystyle\frac{(\mathbf{d}-\mathbf{b}) \times (\mathbf{c} - \mathbf{b})}{|(\mathbf{d}-\mathbf{b}) \times (\mathbf{c} - \mathbf{b})|} \end{array} and so the plane Π 1 \Pi_1 through A B AB that internally bisects the angle between the planes A B C ABC and A B D ABD has equation ( r a ) ( n A B C n A B D ) = 0 \big(\mathbf{r} - \mathbf{a}\big) \cdot \big(\mathbf{n}_{ABC} - \mathbf{n}_{ABD}\big) \; = \; 0 Similarly the plane Π 2 \Pi_2 through A C AC that internally bisects the angle between the planes A B C ABC and A C D ACD has equation ( r a ) ( n A B C n A C D ) = 0 \big(\mathbf{r} - \mathbf{a}\big) \cdot \big(\mathbf{n}_{ABC} - \mathbf{n}_{ACD}\big) \; = \; 0 and the plane Π 3 \Pi_3 through C D CD that intenally bisects the angle between the planes A C D ACD and B C D BCD has equation ( r c ) ( n A C D n B C D ) = 0 \big(\mathbf{r} - \mathbf{c}\big) \cdot \big(\mathbf{n}_{ACD} - \mathbf{n}_{BCD}\big) \; = \; 0 The incentre I I of the tetrahedron will be the intersection of the three planes Π 1 , Π 2 , Π 3 \Pi_1,\,\Pi_2,\,\Pi_3 . The actual coordinates of I I can be determined exactly, but the end result is horrendous. For example, the x x -component is 5 5976 233 + 2796 249 313 58017 + 498 72929 + 233 77937 12 18159321 2988 233 + 2796 249 + 517 58017 + 249 72929 + 233 77937 + 29 18159321 5\frac{5976 \sqrt{233} + 2796 \sqrt{249} - 313 \sqrt{58017} + 498 \sqrt{72929} + 233 \sqrt{77937} - 12 \sqrt{18159321}}{ 2988 \sqrt{233} + 2796 \sqrt{249} + 517 \sqrt{58017} + 249 \sqrt{72929} + 233 \sqrt{77937} + 29 \sqrt{18159321}} Being content with decimal approximations, the coordinates of I I are ( 2.21584 , 3.32475 , 2.58611 ) (2.21584, 3.32475, 2.58611) , which makes O I = 4.759398680 OI = \boxed{4.759398680} .

K T
Dec 7, 2020

a = ( 10 , 0 , 0 ) \vec{a}=(10,0,0) , b = ( 5 , 12 , 0 ) \vec{b}=(5,12,0) , c = ( 5 , 2 , 0 ) \vec{c}=(-5,2,0) , d = ( 0 , 0 , 10 ) \vec{d}=(0,0,10)

By subtracting we get vectors along the edges from d: e 1 = a d = ( 10 , 0 , 10 ) \vec{e_1}=\vec{a}-\vec{d}=(10,0,-10) e 2 = b d = ( 5 , 12 , 10 ) \vec{e_2}=\vec{b}-\vec{d}=(5,12,-10) e 3 = c d = ( 5 , 2 , 10 ) \vec{e_3}=\vec{c}-\vec{d}=(-5,2,-10)

Between these edges, we have three planes, with unit vectors perpendicular to them, pointing inward: v 1 = e 2 × e 1 = ( 12 , 5 , 12 ) / 313 \vec{v_1}=\vec{e2}×\vec{e1}=(-12,5,-12)/\sqrt{313} v 2 = e 1 × e 3 = ( 2 , 15 , 2 ) / 233 \vec{v_2}=\vec{e1}×\vec{e3}=(2,15,2)/\sqrt{233} v 3 = e 3 × e 2 = ( 10 , 10 , 7 ) / 249 \vec{v_3}=\vec{e3}×\vec{e2}=(10,-10,-7)/\sqrt{249}

Now of course the point d \vec{d} has distance 0 0 to each of its adjacent planes. If we move away from d \vec{d} in the right direction, we can increase the distance to these 3 planes with an equal amount. Therefore we are looking for a vector u \vec{u} such that u v 1 = u v 2 = u v 3 \vec{u}\cdot\vec{v_1}=\vec{u}\cdot\vec{v_2}=\vec{u}\cdot\vec{v_3} . We find such a vector by calculating u = ( v 1 v 2 ) × ( v 1 v 3 ) \vec{u}=(\vec{v_1}-\vec{v_2})×(\vec{v_1}-\vec{v_3})

(From this point, I used excel for the calculations)

Now the incentre must be at p = d + k u \vec{p}=\vec{d}+k\vec{u} where k k is chosen such that p is equidistant to the plane ABC and the other three planes. Therefore 10 + k u 3 = k u v 1 10+ku_3=k\vec{u}\cdot\vec{v_1} , or k = 10 u v 1 u 3 k=\frac{10}{\vec{u}\cdot\vec{v_1}-u_3}

We find p = ( 2.21583... , 3 , 32475... , 2.58610.... ) and p = 4.7593986... \vec{p}=(2.21583..., 3,32475..., 2.58610....) \text { and } |\vec{p}| = 4.7593986...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...