Tetrahedrons!

Geometry Level pending

In A B C \triangle{ABC} , the inscribed circle with radius r r is tangent to A B , B C \overline{AB}, \overline{BC} and A C \overline{AC} at points D , E D, E and F F respectively.

Folding the arc of the semi-circle at a right angle, as shown below, the radius of the semicircle becomes the height of the tetrahedron.

Let S S be the total surface area of the tetrahedron.

If A A B C = r ( 2 r 2 + 1188 21 ) A_{\triangle{ABC}} = r(\dfrac{2r^2 + 1188}{21}) and S A A B C = α + β \dfrac{S}{A_{\triangle{ABC}}} = \sqrt{\alpha} + \beta , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Dec 29, 2020

Let the center of the incircle be I I , let the top of the tetrahedron be G G , let A B = c AB = c , A C = b AC = b , and B C = a BC = a , and let the semiperimeter of A B C \triangle ABC be s s .

Then I G = I D = I E = I F = r IG = ID = IE = IF = r , G D = G E = G F = 2 r GD = GE = GF = \sqrt{2}r , so A B C G = 2 2 a r A_{\triangle BCG} = \frac{\sqrt{2}}{2}ar , A A C G = 2 2 b r A_{\triangle ACG} = \frac{\sqrt{2}}{2}br , and A A B G = 2 2 c r A_{\triangle ABG} = \frac{\sqrt{2}}{2}cr .

Since A A B C = r s A_{\triangle ABC} = rs , the surface area S = 2 2 a r + 2 2 b r + 2 2 c r + r s = 1 2 ( a + b + c ) r 2 + r s = r s 2 + r s = r s ( 2 + 1 ) S = \frac{\sqrt{2}}{2}ar + \frac{\sqrt{2}}{2}br + \frac{\sqrt{2}}{2}cr + rs = \frac{1}{2}(a + b + c)r\sqrt{2} + rs = rs\sqrt{2} + rs = rs(\sqrt{2} + 1) .

That means S A A B C = r s ( 2 + 1 ) r s = 2 + 1 \cfrac{S}{A_{\triangle ABC}} = \cfrac{rs(\sqrt{2} + 1)}{rs} = \sqrt{2} + 1 , so α = 2 \alpha = 2 , β = 1 \beta = 1 , and α + β = 3 \alpha + \beta = 3 .

Of course this would be true for any triangle with inscribed circle whose height of the tetrahedron is equal to the radius of the circle. I should have asked for the total surface area, in which case you at least needed to obtain the radius of the circle and the perimeter of the triangle using the given information. I had most of the work done from a previous problem and just quickly did the rest of the solution.

Rocco Dalto - 5 months, 2 weeks ago

Log in to reply

I didn't think you intended for this shortcut! You could post a new similar question where it asks for the total surface area instead (as you said).

David Vreken - 5 months, 2 weeks ago
Rocco Dalto
Dec 28, 2020

A A B C = 1 2 ( x + r + 10 ) r + 1 2 ( x + r + 11 ) + 1 2 ( 2 r + 21 ) = ( x + 2 r + 21 ) r A_{\triangle{ABC}} = \dfrac{1}{2}(x + r + 10)r + \dfrac{1}{2}(x + r + 11) + \dfrac{1}{2}(2r + 21) = (x + 2r + 21)r

and using Heron's formula with s = x + 2 r + 21 s = x + 2r + 21 \implies

A A B C = ( x + 2 r + 21 ) ( x ) ( r + 10 ) ( r + 11 ) A_{\triangle{ABC}} = \sqrt{(x + 2r + 21)(x)(r + 10)(r + 11)} \implies

( x + 2 r + 21 ) 2 r 2 = ( x + 2 r + 21 ) ( x ) ( r + 10 ) ( r + 11 ) (x + 2r + 21)^2r^2 = (x + 2r + 21)(x)(r + 10)(r + 11) \implies

( x + 2 r + 21 ) r 2 = ( r + 10 ) ( r + 11 ) x r 2 x + ( 2 r + 21 ) r 2 = ( r + 10 ) ( r + 11 ) x (x + 2r + 21)r^2 = (r + 10)(r + 11)x \implies r^2x + (2r + 21)r^2 = (r + 10)(r + 11)x

( 21 r + 110 ) x = ( 2 r + 21 ) r 2 x = ( 2 r + 21 ) r 2 21 r + 110 \implies (21r + 110)x = (2r + 21)r^2 \implies x = \dfrac{(2r + 21)r^2}{21r + 110} \implies

A A B C = ( 2 r + 21 ) ( r 2 21 r + 110 + 1 ) r = ( 2 r + 21 ) ( r 2 + 21 r + 110 ) r 21 r + 110 = A_{\triangle{ABC}} = (2r + 21)(\dfrac{r^2}{21r + 110} + 1)r =\dfrac{(2r + 21)(r^2 + 21r + 110)r}{21r + 110} =

r ( 2 r 2 + 1188 21 ) 42 r 3 + 1323 r 2 + 13881 r + 48510 = 42 r 3 + 220 r 2 + 24948 r + 130680 r(\dfrac{2r^2 + 1188}{21}) \implies 42r^3 + 1323r^2 + 13881r + 48510 = 42r^3 + 220r^2 + 24948r+ 130680

1103 r 2 11067 r 82170 = 0 \implies 1103r^2 - 11067r - 82170 = 0 dropping the negative root

r = 11067 + 22023 2206 = 33090 2206 = 15 x = 27 \implies r = \dfrac{11067 + 22023}{2206} = \dfrac{33090}{2206} = 15 \implies x = 27 \implies

A A B C = ( x + 2 r + 21 ) r = ( 78 ) ( 15 ) = 1170 A_{\triangle{ABC}} = (x + 2r + 21)r = (78)(15) = 1170 .

Below I use the vector cross product to find the lateral surface area, but first I need to find B ( x , y ) B(x^{*},y^{*}) .

x 2 + y 2 = 2809 {x^{*}}^{2} + {y^{*}}^{2} = 2809

( x 52 ) 2 + y 2 = 2601 (x^{*} - 52)^2 + {y^{*}}^{2} = 2601

\implies

x 2 104 x + 2704 + y 2 = 2601 {x^{*}}^{2} - 104x^{*} + 2704 + {y^{*}}^2 = 2601

x 2 + y 2 = 2809 {x^{*}}^{2} + {y^{*}}^{2} = 2809

104 x = 2912 x = 28 y = 45 B ( 28 , 45 , 0 ) \implies 104x^{*} = 2912 \implies x^{*} = 28 \implies y^{*} = 45 \implies B(28,45,0)

A P = 27 i + 15 j + 15 k \vec{AP} = 27\vec{i} + 15\vec{j} + 15\vec{k} and A C = 52 i + 0 j + 0 k \vec{AC} = 52\vec{i} + 0\vec{j} + 0\vec{k} \implies

A P X A C = 0 i + 780 j 780 k A P X A C = 780 2 \implies \vec{AP} X \vec{AC} = 0\vec{i} + 780\vec{j} - 780\vec{k} \implies |\vec{AP} X \vec{AC}| = 780\sqrt{2}

A A P C = 1 2 A P X A C = 780 2 2 \implies A_{APC} = \dfrac{1}{2}|\vec{AP} X \vec{AC}| = \dfrac{780\sqrt{2}}{2}

Similarly A B = 28 i + 45 j + 0 k A P X A B = 675 i + 420 j + 795 k \vec{AB} = 28\vec{i} + 45\vec{j} + 0\vec{k} \implies \vec{AP} X \vec{AB} = -675\vec{i} + 420\vec{j} + 795\vec{k}

A P X A B = 795 2 A A P B = 1 2 A P X A B = 795 2 2 \implies |\vec{AP} X \vec{AB}| = 795\sqrt{2} \implies A_{APB} = \dfrac{1}{2}|\vec{AP} X \vec{AB}| = \dfrac{795\sqrt{2}}{2}

and

C P = 25 i + 15 j + 15 k \vec{CP} = -25\vec{i} + 15\vec{j} + 15\vec{k} and C B = 24 i + 45 j + 0 k \vec{CB} = -24\vec{i} + 45\vec{j} + 0\vec{k} \implies

C P X C B = 675 i 360 j 765 k C P X C B = 765 2 \vec{CP} X \vec{CB} = -675\vec{i} - 360\vec{j} - 765\vec{k} \implies |\vec{CP} X \vec{CB}| = 765\sqrt{2} \implies

A C P B = 1 2 A P X A B = 765 2 2 A_{CPB} = \dfrac{1}{2}|\vec{AP} X \vec{AB}| = \dfrac{765\sqrt{2}}{2}

L . S . = 1170 2 S = 1170 ( 2 + 1 ) S A A B C = 2 + 1 = \implies L.S. = 1170\sqrt{2} \implies S = 1170(\sqrt{2} + 1) \implies \dfrac{S}{A_{\triangle{ABC}}} = \sqrt{2} + 1 =

α + β α + β = 3 \sqrt{\alpha} + \beta \implies \alpha + \beta = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...