Tetrahedrons

Geometry Level pending

In the irregular tetrahedron above, find the m B C D = m B C D = θ m\angle{BCD} = m\angle{BC'D} = \theta that minimizes the triangular faces B C D BCD and B C D BC'D when the volume of the tetrahedron is held constant.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 16, 2018

A E C \triangle{AEC} is an isosceles triangle E M \implies EM is the perpendicular bisector of base A C AC M E C \implies \triangle{MEC} is a right triangle and A M = M C AM = MC .

Since A C B \angle{ACB} is a common angle to both right triangle A B C ABC and M E C A B C M E C 2 m m = x + a a x = a MEC \implies \triangle{ABC} \sim \triangle{MEC} \implies \dfrac{2m}{m} = \dfrac{x + a}{a} \implies x = a and the pythagorean theorem in A B C y = 2 m = 3 a \triangle{ABC} \implies y = 2m = \sqrt{3}a .

Let h h be the height of the tetrahedron.

v = 3 a i + a j + 0 k \vec{v} = -\sqrt{3}a\vec{i} + a\vec{j} + 0\vec{k}

u = 3 a i + 0 j + h k \vec{u} = -\sqrt{3}a\vec{i} + 0\vec{j} + h\vec{k}

u X v = a h i 3 a h j 3 a 2 k u X v = a 4 h 2 + 3 a 2 \implies \vec{u} X \vec{v} = -ah\vec{i} - \sqrt{3}ah\vec{j} - \sqrt{3}a^2\vec{k} \implies |\vec{u} X \vec{v}| = a\sqrt{4h^2 + 3a^2} and u = 3 a 2 + h 2 |\vec{u}| = \sqrt{3a^2 + h^2}

d = a 4 h 2 + 3 a 2 3 a 2 + h 2 A B C D = 1 2 a 4 h 2 + 3 a 2 \implies d = \dfrac{a\sqrt{4h^2 + 3a^2}}{\sqrt{3a^2 + h^2}} \implies A_{\triangle{BCD}} = \dfrac{1}{2}a\sqrt{4h^2 + 3a^2}

B C D B C D \triangle{BCD} \cong \triangle{BC'D}

Let A = A B C D = A B C D = 1 2 a 4 h 2 + 3 a 2 A = A_{\triangle{BCD}} = A_{\triangle{BC'D}} = \dfrac{1}{2}a\sqrt{4h^2 + 3a^2} .

The volume V = 1 3 a 2 h = k h = 3 k a 2 A ( a ) = 1 2 12 k 2 + 3 a 6 a V = \dfrac{1}{\sqrt{3}} a^2 h = k \implies h = \dfrac{\sqrt{3}k}{a^2} \implies A(a) = \dfrac{1}{2}\dfrac{\sqrt{12k^2 + 3a^6}}{a} \implies

d A d a = 3 ( a 6 2 k 2 ) a 2 12 k 2 + 3 a 6 = 0 a 0 a = ( 2 k ) 1 3 h = 3 ( k 2 ) 1 3 \dfrac{dA}{da} = \dfrac{3(a^6 - 2k^2)}{a^2\sqrt{12k^2 + 3a^6}} = 0 \:\ a \neq 0 \implies \boxed{a = (\sqrt{2}k)^{\frac{1}{3}}} \implies \boxed{h = \sqrt{3}(\dfrac{k}{2})^{\frac{1}{3}}}

d A d a < 0 \dfrac{dA}{da} < 0 when a < ( 2 k ) 1 3 a < (\sqrt{2}k)^{\frac{1}{3}} and d A d a > 0 \dfrac{dA}{da} > 0 when a > ( 2 k ) 1 3 a > (\sqrt{2}k)^{\frac{1}{3}} \implies minimum at a = ( 2 k ) 1 3 a = (\sqrt{2}k)^{\frac{1}{3}} .

v = 2 a |\vec{v}| = 2a and using u X v = a 4 h 2 + 3 a 2 |\vec{u} X \vec{v}| = a\sqrt{4h^2 + 3a^2} and u = 3 a 2 + h 2 |\vec{u}| = \sqrt{3a^2 + h^2} above \implies

sin ( θ ) = u X v u v = 1 2 \sin(\theta) = \dfrac{|\vec{u} X \vec{v}|}{|\vec{u}||\vec{v}|} = \dfrac{1}{\sqrt{2}} θ = 4 5 \implies \theta = \boxed{45^\circ} .

Note: h 2 = ( 3 2 2 3 ) k 2 3 = A B C D = A B C D h^2 = (\dfrac{3}{2^{\frac{2}{3}}})k^{\frac{2}{3}} = A_{\triangle{BCD}} = A_{\triangle{BC'D}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...