Tetration Cube

Algebra Level 2

3 x = x 3 \large ^{3}x = x^3

Given that x x is a real number greater than 5 4 \frac 54 , find x x .

Notation: m n n m n n n n n n no. of n ’s = m ^{m}n \equiv n\uparrow \uparrow m \equiv \underbrace{n^{n^{n^{n^{n^{n^\dots}}}}}}_{\text{no. of }n \text{'s} = m} denotes a power tower or tetration.


The answer is 1.825455022924830040041.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

James Watson
Aug 16, 2020

Note: W ( ) W(\cdot) denotes the product log which is the inverse function for x e x xe^x .

3 x = x 3 x x x = x 3 x x ln x = 3 ln x x x = 3 x = 3 x x = e 1 x ln 3 1 = 1 x e 1 x ln 3 ln 3 = 1 x ln 3 e 1 x ln 3 \begin{aligned} ^{3}x &= x^3 \\ \Longrightarrow x^{x^x} &= x^3 \\ \Longrightarrow x^x \ln x &= 3\ln x \\ \Longrightarrow x^x &= 3 \\ \Longrightarrow x &= \sqrt[x]{3} \\ \Longrightarrow x &= e^{\frac{1}{x}\ln 3} \\ \Longrightarrow 1 &= \frac{1}{x}e^{\frac{1}{x}\ln 3} \\ \Longrightarrow \ln 3 &= \frac{1}{x} \ln 3 e^{\frac{1}{x} \ln 3} \end{aligned} Here, we can use the product log to solve this:

ln 3 = ln 3 1 x e 1 x ln 3 W ( ln 3 ) = ln 3 1 x W ( ln 3 ) ln 3 = 1 x x = ln 3 W ( ln 3 ) = e W ( ln 3 ) = 1.825455022924830040041 \begin{aligned} \ln 3 &= \blue{\ln 3 \frac{1}{x}}e^{\blue{\frac{1}{x}\ln 3}} \\ \Longrightarrow W(\ln 3) &= \blue{\ln 3 \frac{1}{x}} \\ \Longrightarrow \frac{W(\ln 3)}{\ln 3} &= \frac{1}{x} \\ \Longrightarrow x &= \green{\boxed{\frac{\ln 3}{W(\ln 3)}}} = \green{\boxed{e^{W(\ln 3)}}} = \green{\boxed{1.825455022924830040041\dots }} \end{aligned}

Chew-Seong Cheong
Aug 16, 2020

3 x = x 3 x x x = x 3 x x = 3 \begin{aligned} ^3x & = x^3 \\ x^{x^x} & = x^3 \\ \implies x^x & = 3 \end{aligned}

By numerical method x 1.825 x \approx \boxed{1.825} . (Note that the eventual way of finding the value of W ( ) W(\cdot) is numerical.)

Typo on second line: x x x x^{x^x} not x x 2 x^{x^2}

James Watson - 9 months, 4 weeks ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 9 months, 4 weeks ago

Log in to reply

no problem

James Watson - 9 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...