Integral of a tetration?

Calculus Level pending

Evaluate e 3 e 1 ln ( 2 x ) d x \large \int_{e}^{^{3}e} \frac{1}{\ln(^{2}x)}dx

Notation: m n n m n n n n n n no. of n ’s = m ^{m}n \equiv n\uparrow \uparrow m \equiv \underbrace{n^{n^{n^{n^{n^{n^\dots}}}}}}_{\text{no. of }n \text{'s} = m} denotes a power tower or tetration.


The answer is 2.7182818284590452353602.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 28, 2020

e 3 e 1 ln ( 2 x ) d x = e e e e 1 ln ( x x ) d x = e e e e 1 x ln x d x Let x = e u d x = e u d u = 1 e e 1 u d u u = ln x ln e = 1 , ln e e e = e e = ln u 1 e e = ln e e ln 1 = e 2.72 \begin{aligned} \int_e^{^3e} \frac 1{\ln (^2x)} dx & = \int_e^{e^{e^e}} \frac 1{\ln (x^x)} dx \\ & = \int_e^{e^{e^e}} \frac 1{x\ln x} dx & \small \blue{\text{Let }x = e^u \implies dx = e^u\ du} \\ & = \int_1^{e^e} \frac 1u du & \small \blue{\implies u = \ln x \implies \ln e = 1, \ \ln e^{e^e} = e^e} \\ & = \ln u \ \bigg|_1^{e^e} \\ & = \ln e^e - \ln 1 \\ & = e \approx \boxed{2.72} \end{aligned}

Typo: ln ( e 2 ) should be ln ( e e ) on the second to last line \ln(e^2) \textrm{ should be } \ln(e^e) \textrm{ on the second to last line}

James Watson - 10 months, 2 weeks ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 10 months, 2 weeks ago
James Watson
Jul 27, 2020

e 3 e 1 ln ( 2 x ) d x = ln ln ( x ) e 3 e = ln ln ( e e e ) ln ln ( e ) = ln e e ln 1 = e \int_{e}^{^{3}e} \frac{1}{\ln(^{2}x)}dx = \ln|\ln(x)|\, \bigg|^{^{3}e}_{e} = \ln|\ln(e^{e^e})| - \ln|\ln(e)| = \ln|e^e| - \ln|1| = \boxed{e}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...