Tetration of an integral?

Calculus Level 3

I = 0 e ι 1 d ι \Iota=\int_0^{\infty}e^{-\iota - 1}d\iota

Given that a = lim s s I a = \lim\limits_{s\to \infty} {^{s}\Iota} , calculate 1 2 + 0 1 a e a + 2 τ d τ \large \cfrac{1}{2} + \int_{0}^{1}ae^a+2\tau \: d\tau

Notation: n m = m m m } n times {^{n}m} = m^{m^{m^{\dots}}} \}n \textrm{ times}


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Watson
Jul 11, 2020

After integrating I \Iota , we can see that I = 1 e \Iota = \cfrac{1}{e}

Now we can solve for a a :

a = lim s s I = I I I = ( 1 e ) ( 1 e ) ( 1 e ) a = \lim\limits_{s\to\infty} {^{s}\Iota} = \Iota^{\Iota^{\Iota^{\dots}}} = \left(\frac{1}{e}\right)^{\left(\frac{1}{e}\right)^{\left(\frac{1}{e}\right)^{\dots}}}

a = ( 1 e ) a a e a = 1 \Longrightarrow a = \left(\frac{1}{e}\right)^{a} \Longrightarrow ae^{a}=1 We can see that a e a = 1 ae^a = 1 and from here we can conclude that

1 2 + 0 1 a e a + 2 τ d τ = 1 2 + 0 1 1 + 2 τ d τ = 1 2 + ( τ + τ 2 0 1 ) \cfrac{1}{2} + \int_{0}^{1} ae^a+2\tau \: d\tau = \cfrac{1}{2} + \int_{0}^{1}1+2\tau \: d\tau = \cfrac{1}{2} + \left( \tau + \tau^2 \bigg|_{0}^{1} \right)

= 1 2 + ( 2 0 ) = 2.5 = \cfrac{1}{2} + \left( 2 - 0 \right) = \boxed{2.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...