1 + 5 4 + 5 2 7 + 5 3 1 0 + ⋯
Find the infinite sum of the arithmetic-geometric progression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Here is a third way to solve it: Find the generating function, taking partial sums twice:
( 1 , 2 , 0 , 0 , 0 , . . . ) ⟷ 1 + 2 x ( 1 , 3 , 3 , 3 , 3 , . . . ) ⟷ 1 − x 1 + 2 x ( 1 , 4 , 7 , 1 0 , . . . ) ⟷ ( 1 − x ) 2 1 + 2 x At x = 5 1 this comes out to be 1 6 3 5
Nice Solution Sir.
Brilliant solution. How did you know the coefficients would be in an arithmetic progression?
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Arithmetic and Geometric Progressions Problem Solving
The given series is arithmetico - geometric series. Let S n = 1 + 5 4 + 5 2 7 + . . . . + 5 n − 1 3 n − 2 5 S n = 5 1 + 5 2 4 + 5 2 7 + . . . . + 5 n − 1 3 n − 5 + 5 n 3 n − 2 Subtract both The above Equations 5 4 S n = 1 + [ 5 3 + 5 2 3 + . . . . + 5 n − 1 3 ] − [ 5 n 3 n − 2 ] S n = 4 5 + 4 5 × 5 3 ( 1 − 5 1 1 − 5 n − 1 1 ) − ( 5 n 3 n − 2 × 4 5 ) S n = 4 5 + 4 3 ( 4 5 n − 1 − 1 ) 5 n − 2 1 − 4 × 5 n − 1 3 n − 2 S n = 4 5 + 1 6 1 5 − 1 6 × 5 n − 2 3 − 2 0 × 5 n − 2 3 n − 2 S n = 1 6 3 5 − ( 8 0 ( 5 n − 2 ) 1 2 n + 7 ) As n Approaches Infinity :- S ∞ = 1 6 3 5 This is the Second Way to Solve This Problem : S ∞ = 1 + 5 4 + 5 2 7 + . . . ∞ 5 1 S ∞ = 5 1 + 5 2 4 + 5 3 7 + . . . ∞ Subtract Both the Above equations , we get 5 4 S ∞ = 1 + 5 3 + 5 2 3 + . . . ∞ 5 4 S ∞ = 1 + 1 − 5 1 5 3 S ∞ = 1 6 3 5