An AP or GP?

Algebra Level 3

1 + 4 5 + 7 5 2 + 10 5 3 + \large 1 + \dfrac45 + \dfrac7{5^2} + \dfrac{10}{5^3} + \cdots

Find the infinite sum of the arithmetic-geometric progression above.

35 16 \dfrac{35}{16} 35 2 \dfrac{35}{2} 35 4 \dfrac{35}{4} 7 16 \dfrac{7}{16} 5 16 \dfrac{5}{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Apr 30, 2016

Relevant wiki: Arithmetic and Geometric Progressions Problem Solving

The given series is arithmetico - geometric series. Let S n = 1 + 4 5 + 7 5 2 + . . . . + 3 n 2 5 n 1 S n 5 = 1 5 + 4 5 2 + 7 5 2 + . . . . + 3 n 5 5 n 1 + 3 n 2 5 n Subtract both The above Equations 4 5 S n = 1 + [ 3 5 + 3 5 2 + . . . . + 3 5 n 1 ] [ 3 n 2 5 n ] S n = 5 4 + 5 4 × 3 5 ( 1 1 5 n 1 1 1 5 ) ( 3 n 2 5 n × 5 4 ) S n = 5 4 + 3 4 ( 5 n 1 1 4 ) 1 5 n 2 3 n 2 4 × 5 n 1 S n = 5 4 + 15 16 3 16 × 5 n 2 3 n 2 20 × 5 n 2 S n = 35 16 ( 12 n + 7 80 ( 5 n 2 ) ) As n Approaches Infinity :- S = 35 16 \text {The given series is arithmetico - geometric series.}\ \\ \text {Let} S_n = 1 +\dfrac45+\dfrac{7}{5^2}+....+\dfrac{3n-2}{5^{n-1}} \\ \dfrac{S_n}{5} =\dfrac15 +\dfrac{4}{5^2}+\dfrac{7}{5^2}+....+\dfrac{3n-5}{5^{n-1}}+\dfrac{3n-2}{5^n} \\ \text {Subtract both The above Equations} \\ \dfrac{4}{5}S_n = 1 + [\dfrac35+\dfrac{3}{5^2}+....+\dfrac{3}{5^{n-1}}]-[\dfrac{3n-2}{5^n}] \\ S_n=\dfrac{5}{4}+\dfrac{5}{4}\times\dfrac{3}{5}(\dfrac{1-\dfrac{1}{5^{n-1}}}{1-\dfrac{1}{5}}) - (\dfrac{3n-2}{5^n}\times\dfrac54)\ \\ S_n = \dfrac54+\dfrac34(\dfrac{5^{n-1}-1}{4})\dfrac{1}{5^{n-2}} - \dfrac{3n-2}{4\times5^{n-1}}\ \\ S_n=\dfrac54+\dfrac{15}{16}-\dfrac{3}{16\times5^{n-2}}-\dfrac{3n-2}{20\times5^{n-2}}\ \\ S_n=\dfrac{35}{16}-(\dfrac{12n+7}{80(5^{n-2})})\ \\ \text{As n Approaches Infinity :-}\ \\S_\infty=\dfrac{35}{16} This is the Second Way to Solve This Problem : S = 1 + 4 5 + 7 5 2 + . . . 1 5 S = 1 5 + 4 5 2 + 7 5 3 + . . . Subtract Both the Above equations , we get 4 5 S = 1 + 3 5 + 3 5 2 + . . . 4 5 S = 1 + 3 5 1 1 5 S = 35 16 \text{This is the Second Way to Solve This Problem : }\ \\S_\infty=1+\dfrac45+\dfrac{7}{5^2}+...\infty \\ \dfrac15S_\infty=\dfrac15+\dfrac{4}{5^2}+\dfrac{7}{5^3}+...\infty \\ \text{Subtract Both the Above equations , we get} \\ \dfrac45S_\infty=1+\dfrac35+\dfrac3{5^2}+...\infty \\\dfrac45S_\infty=1+\dfrac{\dfrac35}{1-\dfrac15} \\ S_\infty=\dfrac{35}{16}

Otto Bretscher
May 1, 2016

Here is a third way to solve it: Find the generating function, taking partial sums twice:

( 1 , 2 , 0 , 0 , 0 , . . . ) 1 + 2 x (1,2,0,0,0,...) \longleftrightarrow 1+2x ( 1 , 3 , 3 , 3 , 3 , . . . ) 1 + 2 x 1 x (1,3,3,3,3,...) \longleftrightarrow \frac{1+2x}{1-x} ( 1 , 4 , 7 , 10 , . . . ) 1 + 2 x ( 1 x ) 2 (1,4,7,10,...) \longleftrightarrow \frac{1+2x}{(1-x)^2} At x = 1 5 x=\frac{1}{5} this comes out to be 35 16 \boxed{\frac{35}{16}}

Nice Solution Sir. \text {Nice Solution Sir. }

Sabhrant Sachan - 5 years, 1 month ago

Brilliant solution. How did you know the coefficients would be in an arithmetic progression?

James Wilson - 5 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...