G.P \text{G.P}

Algebra Level 3

Let A = 1 + r a + r 2 a + r 3 a + A = 1+r^a + r^{2a} + r^{3a} + \cdots , and
let B = 1 + r b + r 2 b + r 3 b + B = 1+r^b + r^{2b} + r^{3b} + \cdots .

If r < 1 |r| < 1 , which of the following is equal to a b \dfrac ab ?

l o g ( A 1 A ) l o g ( B 1 B ) \dfrac{log (\dfrac{A-1}{A})}{log (\dfrac{B-1}{B})} l o g B l o g A \dfrac{log{B}}{log{A}} l o g ( 1 A ) l o g ( 1 B ) \dfrac{log{(1-A)}}{log{(1-B)}} l o g ( 1 + A ) l o g ( 1 + B ) \dfrac{log{(1+A)}}{log{(1+B)}} l o g A l o g B \dfrac{logA}{logB}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Dhawan
May 1, 2016

A = 1 1 r a a n d B = 1 1 r b A 1 A = r a a n d B 1 B = r b log A 1 A = l o g r a = a l o g r a n d log B 1 B = l o g r b = b l o g r log A 1 A log B 1 B = a b A=\quad \frac { 1 }{ 1-{ r }^{ a } } \quad and\quad B=\frac { 1 }{ 1-{ r }^{ b } } \\ \Rightarrow \frac { A-1 }{ A } =\quad { r }^{ a }\quad and\quad \frac { B-1 }{ B } =\quad { r }^{ b }\\ \Rightarrow \log { \frac { A-1 }{ A } = } log{ \quad r }^{ a }=\quad a\quad log\quad r\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad and\quad \\ \log { \frac { B-1 }{ B } = } log\quad { r }^{ b }=\quad b\quad log\quad r\\ \therefore \boxed {\frac { \log { \frac { A-1 }{ A } } }{ \log { \frac { B-1 }{ B } } } =\quad \frac { a }{ b } } \\

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...