This Looks Familiar

Algebra Level 3

4 + 44 + 444 + + 44444 4 n 4’s 4 + 44 + 444 + \cdots + \underbrace{44444\ldots4}_{n\text{ 4's}}

Find the closed form of the summation above.

4 81 [ 10 ( 1 0 n + 1 ) 9 n ] \dfrac4{81}[10(10^n+1)-9n] 4 81 [ 10 ( 1 0 n + 1 ) + 9 n ] \dfrac4{81}[10(10^n+1)+9n] 4 81 [ 10 ( 1 0 n 1 ) 9 n ] \dfrac4{81}[10(10^n-1)-9n] 4 81 [ 10 ( 1 0 n 1 ) + 9 n ] \dfrac4{81}[10(10^n-1)+9n]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
May 1, 2016

Relevant wiki: Arithmetic and Geometric Progressions Problem Solving

Let , S n = 4 + 44 + 444 + 4444 + . . . . (n terms) S n = 4 ( 1 + 11 + 111 + 1111 + . . . . n terms ) S n = 4 9 ( 9 + 99 + 999 + 9999 + . . . . n terms ) S n = 4 9 [ ( 10 1 ) + ( 100 1 ) + ( 1000 1 ) + ( 10000 1 ) + . . . . n terms ] S n = 4 9 [ ( 10 + 1 0 2 + 1 0 3 + n terms ) ( 1 + 1 + 1 + n terms ) ] S n = 4 9 ( 10 ( 1 0 n 1 ) 10 1 n ) S n = 4 81 [ 10 ( 1 0 n 1 ) 9 n ] \text {Let , } S_n=4+44+444+4444+....\text {(n terms)} \\ \implies S_n=4(1+11+111+1111+....\text {n terms}) \\ \implies S_n=\dfrac49(9+99+999+9999+....\text {n terms}) \\ \implies S_n=\dfrac49[(10-1)+(100-1)+(1000-1)+(10000-1)+....\text {n terms}] \\ \implies S_n=\dfrac49[(10+10^2+10^3+\cdots\text{n terms})-(1+1+1+\cdots\text{n terms})] \\ S_n=\dfrac49(\dfrac{10(10^n-1)}{10-1}-n)\\ S_n=\dfrac{4}{81}[10(10^n-1)-9n]

Sayandeep Ghosh
May 4, 2016

I have approached like this solution only....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...