Binomial 3 \text{Binomial}^3

Find the value of x x if,

r = 0 10 r 3 ( 10 r ) = x + 45900 \large{\displaystyle{\sum^{10}_{r=0} r^3 \dbinom{10}{r}}}=x+45900

Details and Assumptions

  • Here ( n r ) \dbinom{n}{r} is the binomial coefficient

  • Here \sum denotes continued sum.


The answer is 120500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

r = 0 10 ( 10 r ) x r = ( 1 + x ) 10 r = 0 10 r 3 ( 10 r ) x r 1 = d d x ( x d d x ( x d d x ( 1 + x ) 10 ) ) = d d x ( x d d x ( 10 x ( 1 + x ) 9 ) ) = d d x ( 10 x ( 1 + x ) 9 + 90 x 2 ( 1 + x ) 8 ) = 10 ( 1 + x ) 9 + 90 x ( 1 + x ) 8 + 180 x ( 1 + x ) 8 + 720 x 2 ( 1 + x ) 7 Putting x = 1 r = 0 10 r 3 ( 10 r ) = 10 ( 2 9 ) + 90 ( 2 8 ) + 180 ( 2 8 ) + 720 ( 2 7 ) = 166400 = 120500 + 45900 \begin{aligned} \sum_{r=0}^{10} \binom {10}r x^r & = (1+x)^{10} \\ \implies \sum_{r=0}^{10} r^3\binom {10}r x^{r-1} & = \frac d{dx} \left(x \cdot \frac d{dx} \left( x \cdot \frac d{dx} (1+x)^{10} \right) \right) \\ & = \frac d{dx} \left(x \cdot \frac d{dx} \left(10x (1+x)^9 \right) \right) \\ & = \frac d{dx} \left(10x(1+x)^9 + 90x^2(1+x)^8 \right) \\ & = 10(1+x)^9 + 90x(1+x)^8 + 180x(1+x)^8 + 720x^2(1+x)^7 & \small \color{#3D99F6} \text{Putting }x=1 \\ \implies \sum_{r=0}^{10} r^3\binom {10}r & = 10(2^9) + 90(2^8) + 180(2^8) + 720(2^7) \\ & = 166400 = 120500 + 45900 \end{aligned}

Therefore, x = 120500 x=\boxed{120500} .

Patrick Corn
Oct 26, 2017

I assume n = 10 n=10 ?

Same I did.

Naren Bhandari - 3 years, 7 months ago

Yeah! :P Sorry for that

Md Zuhair - 3 years, 7 months ago

Log in to reply

I see problem has been corrected. :)

Naren Bhandari - 3 years, 7 months ago

Log in to reply

Yeah :)...

Md Zuhair - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...