Breaking my limits

Calculus Level 3

lim x n x n e x = 0 \large \lim_{x\to \infty} \frac{nx^n}{e^x} = 0

Let n n be a certain positive integer satisfying the equation above, which of the following options must be true?

Clarification : e e denotes the Euler's number , e 2.71828 e \approx 2.71828 .


Source : IIT - 1992.
n = 0 n= 0 only n = 2 n=2 only None of these choices n n is any positive integer There is no value of n n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 22, 2016

lim x n x n e x = lim x n x n 1 + x 1 ! + x 2 2 ! + . . . + x n n ! + . . . Maclaurin series = lim x n x n x n 1 x n + 1 1 ! x n + x 2 2 ! x n + . . . + x n n ! x n + . . . = lim x n 1 x n + 1 x n 1 + 1 2 x n 2 + . . . + 1 n ! + 1 ( n + 1 ) ! x + 1 ( n + 2 ) ! x 2 + . . . Red terms 0 and blue terms = 0 \begin{aligned} \lim_{x \to \infty} \frac{nx^n}{\color{#3D99F6}{e^x}} & = \lim_{x \to \infty} \frac{nx^n}{\color{#3D99F6}{1+\frac{x}{1!} + \frac{x^2}{2!}+ ... + \frac{x^n}{n!} + ...}} \quad \quad \small \color{#3D99F6}{\text{Maclaurin series}} \\ & = \lim_{x \to \infty} \frac{\frac{nx^n}{x^n}}{\frac{1}{x^n}+\frac{1}{1!x^n} + \frac{x^2}{2!x^n}+ ... + \frac{x^n}{n!x^n} + ...} \\ & = \lim_{x \to \infty} \frac{n}{\color{#D61F06}{\frac{1}{x^n}+\frac{1}{x^{n-1}} + \frac{1}{2x^{n-2}}+ ... }+ \frac{1}{n!} + \color{#3D99F6}{\frac{1}{(n+1)!}x + \frac{1}{(n+2)!}x^2 + ...}} \quad \quad \small \color{#D61F06}{\text{Red terms}\to 0} \text{ and } \color{#3D99F6}{\text{blue terms}\to \infty} \\ & = \boxed{0} \end{aligned}

J D
May 22, 2016

An exponential will always grow faster than a polynomial or a constant, so no matter what n is, the limit will always be zero as X approaches infinity.

exactly ... nice observation, you can even solve the problem using LH rule

lim x n x n e x lim x n n ! e x 0 \displaystyle \lim_{x\to \infty} \frac{nx^n}{e^x} \\ \displaystyle \lim_{x\to \infty} \frac{n\cdot n!}{e^x} \implies 0

Sabhrant Sachan - 5 years ago

Yeah , same approach!

Samanvay Vajpayee - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...