I Love Integration!

Calculus Level 2

0 1 tan 1 x 1 + x 2 d x = ? \large \int_{0}^{1} \frac{\tan^{-1} x}{1 + x^{2}} \mathrm dx = ?

π 2 32 \frac{\pi^{2}}{32} π 2 16 \frac{\pi^{2}}{16} π 2 4 \frac{\pi^{2}}{4} None of the others. π 2 8 \frac{\pi^{2}}{8}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Apr 9, 2018

I = 0 1 tan 1 x 1 + x 2 d x Let tan 1 x = u d x 1 + x 2 = d u and 0 1 0 π / 4 = 0 π / 4 u d u = 1 2 ( π 4 ) 2 = π 2 32 \begin{aligned} I &= \displaystyle \int_0^1 \dfrac{\tan^{-1} x}{1+x^2} \,dx & \small\color{#3D99F6}{\text{Let } \tan^{-1} x = u \implies \dfrac{dx}{1+x^2} = \,du \text{ and } \displaystyle \int_0^1 \rightarrow \int_0^{{\pi}/{4}} } \\ &= \displaystyle \int_0^{{\pi}/{4}} u \,du \\ &= \dfrac 12 {\left( \dfrac{\pi}{4} \right)}^2 \\ &= \boxed{\dfrac{\pi^2}{32}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...