Integers only

Find the sum of coefficients of integer powers of x x in the binomial expansion of ( 1 2 x ) 50 (1-2\sqrt{x})^{50} .


Source: IIT-JEE mains 2015.
1 2 ( 3 50 1 ) \dfrac{1}{2}(3^{50}-1) 1 2 ( 3 50 + 1 ) \dfrac{1}{2}(3^{50}+1) 1 2 ( 2 50 + 1 ) \dfrac{1}{2}(2^{50}+1) 1 2 ( 3 50 ) \dfrac{1}{2}(3^{50}) 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 10, 2016

To solve this Problem , make two equations : ( 1 2 x ) 50 = 1 + ( 50 1 ) ( 2 x ) + ( 50 2 ) ( 2 x ) 2 + ( 50 3 ) ( 2 x ) 3 + + ( 50 50 ) ( 2 x ) 50 ( 1 + 2 x ) 50 = 1 + ( 50 1 ) ( 2 x ) + ( 50 2 ) ( 2 x ) 2 + ( 50 3 ) ( 2 x ) 3 + + ( 50 50 ) ( 2 x ) 50 Add the two equations , you get ( 1 2 x ) 50 + ( 1 + 2 x ) 50 = 2 [ 1 + ( 50 2 ) ( 2 x ) 2 + ( 50 4 ) ( 2 x ) 4 + + ( 50 50 ) ( 2 x ) 50 ] ( 1 2 x ) 50 + ( 1 + 2 x ) 50 = 2 [ 1 + ( 50 2 ) ( 2 ) 2 x + ( 50 4 ) ( 2 ) 4 x 2 + + ( 50 50 ) ( 2 ) 50 x 25 ] Put x=1 ( 1 2 1 ) 50 + ( 1 + 2 1 ) 50 A n s = 1 2 ( 1 + 3 50 ) \text{To solve this Problem , make two equations : } \\ (1-2\sqrt{x})^{50}=1+\dbinom{50}{1}(-2\sqrt{x})+\dbinom{50}{2}(-2\sqrt{x})^2+\dbinom{50}{3}(-2\sqrt{x})^3+\cdots+\dbinom{50}{50}(-2\sqrt{x})^{50} \\ (1+2\sqrt{x})^{50}=1+\dbinom{50}{1}(2\sqrt{x})+\dbinom{50}{2}(2\sqrt{x})^2+\dbinom{50}{3}(2\sqrt{x})^3+\cdots+\dbinom{50}{50}(2\sqrt{x})^{50} \\ \text{Add the two equations , you get } \\ (1-2\sqrt{x})^{50}+(1+2\sqrt{x})^{50}=2[1+\dbinom{50}{2}(2\sqrt{x})^2+\dbinom{50}{4}(2\sqrt{x})^4+\cdots+\dbinom{50}{50}(2\sqrt{x})^{50}] \\ (1-2\sqrt{x})^{50}+(1+2\sqrt{x})^{50}=2[1+\dbinom{50}{2}(2)^2x+\dbinom{50}{4}(2)^4x^2+\cdots+\dbinom{50}{50}(2)^{50}x^{25}] \\ \text{Put x=1 } \\(1-2\sqrt{1})^{50}+(1+2\sqrt{1})^{50} \\ \boxed{Ans =\dfrac12(1+3^{50})}

Question of jee main 2015

Gaurav Chahar - 5 years, 1 month ago

Log in to reply

Thanks for the information :)

Sabhrant Sachan - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...