Breaking walls

15 < x 1 + x 2 + x 3 20 \large 15 < x_1 + x_2 + x_3 \leq 20

Find the total number of positive integer triplets ( x 1 , x 2 , x 3 ) (x_1,x_2,x_3) satisfying the inequality above.


The answer is 685.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Muhammad Ihsan
May 12, 2016

Relevant wiki: Stars and Bars

the number solution of x 1 + x 2 + x 3 20 minus the number solution of x 1 + x 2 + x 3 15 So, the answer is C ( 20 , 3 ) C ( 15 , 3 ) = 685 \text{the number solution of } x_1 + x_2 + x_3 \leq 20 \text{ minus the number solution of } x_1 + x_2 + x_3 \leq 15\\ \text{So, the answer is } C(20, 3) - C(15, 3) = 685

Sabhrant Sachan
May 7, 2016

To Solve this Problem , i will be using the help of generating functions The Max. Value x 1 , x 2 , x 3 , Can achieve For the condition to be true is 18 and the min is 1 We need to find the sum of coefficients of x 16 , x 17 , x 18 , x 19 and x 20 in : ( x 1 + x 2 + x 3 + + x 18 ) 3 ( x 1 x 19 ) 3 ( 1 x ) 3 x 3 ( 1 x 18 ) 3 ( 1 x ) 3 We need to find the sum of coefficients of x 13 , x 14 , x 15 , x 16 and x 17 in : ( 1 x 18 ) 3 ( 1 x ) 3 We know that : 1 1 x = n = 0 x n Take 1st Derivative : 1 ( 1 x ) 2 = n = 0 n x n 1 Take 2nd Derivative : 2 ( 1 x ) 3 = n = 0 n ( n 1 ) x n 2 1 ( 1 x ) 3 = n = 0 n ( n 1 ) 2 x n 2 ( 1 . . . . . We don’t need the rest of the terms ) ( n = 0 n ( n 1 ) 2 x n 2 ) Required value of n = 15 , 16 , 17 , 18 , 19 15 × 7 + 8 × 15 + 17 × 8 + 9 × 17 + 19 × 9 Ans = 685 \text {To Solve this Problem , i will be using the help of generating functions } \\ \text{The Max. Value }x_1,x_2,x_3,\text{ Can achieve For the condition to be true is 18 and the min is 1} \\ \text{We need to find the sum of coefficients of }x^{16},x^{17},x^{18},x^{19}\text{ and } x^{20} \text { in : } \\ (x^1+x^2+x^3+\cdots+x^{18})^3 \\ \implies \dfrac{(x^1-x^{19})^3}{(1-x)^3} \implies x^3\dfrac{(1-x^{18})^3}{(1-x)^3}\\ \text{We need to find the sum of coefficients of }x^{13},x^{14},x^{15},x^{16}\text{ and } x^{17} \text { in : }\\ \implies \dfrac{(1-x^{18})^3}{(1-x)^3}\\ \text{We know that : }\dfrac{1}{1-x} = \displaystyle{\sum_{n=0}^{\infty}x^n}\\ \text{Take 1st Derivative : }\dfrac{1}{(1-x)^2} = \displaystyle{\sum_{n=0}^{\infty}nx^{n-1}} \\ \text{Take 2nd Derivative : }\dfrac{2}{(1-x)^3} = \displaystyle{\sum_{n=0}^{\infty}n(n-1)x^{n-2}}\\ \implies \dfrac{1}{(1-x)^3} = \displaystyle{\sum_{n=0}^{\infty}\dfrac{n(n-1)}{2}x^{n-2}}\\(1-.....\text{We don't need the rest of the terms})(\displaystyle{\sum_{n=0}^{\infty}}\dfrac{n(n-1)}{2}x^{n-2}) \\ \implies \text{Required value of }n=15,16,17,18,19 \\ \implies 15\times7+8\times{15}+17\times8+9\times{17}+19\times9 \\ \text{Ans = }\color{#3D99F6}{\boxed{685}}

Or you could just calculate (15 2)+(16 2)+(17 2)+(18 2)+(19 2)=685, where (x y) is a binomal coeficient example (15 2)=15×14/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...