Max, Min

Calculus Level 4

In the following functions, x x is any real number .

f ( x ) = x + 1 g ( x ) = x 2 + 1 \large f(x) = |x|+1 \\ \large g(x)=x^2+1 Let h ( x ) = { max { f ( x ) , g ( x ) } if x 0 min { f ( x ) , g ( x ) } if x > 0 h(x) = \begin{cases} \text{ max}\{ f(x), \ g(x) \} & \text{ if } x\le 0 \\ \text{ min}\{ f(x), \ g(x) \} & \text{ if } x>0 \end{cases}

Find the total number of points at which h ( x ) h(x) is not differentiable.

Notation : | \cdot | denotes the absolute value function .

1 2 3 None of these choices 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

h ( x ) = { max { f ( x ) , g ( x ) } = max { 1 x , x 2 + 1 } if x 0 min { f ( x ) , g ( x ) } = min { 1 + x , x 2 + 1 } if x > 0 \begin{aligned} h(x) & = \begin{cases} \max \{ f(x), \ g(x)\} & = \max \{1-x, \ x^2+1 \} & \text{if } x\le 0 \\ \min \{ f(x), \ g(x)\} & = \min \{1+x, \ x^2+1\} & \text{if } x> 0 \end{cases} \end{aligned}

Equating f ( x ) = g ( x ) f(x) = g(x) for x 0 x \le 0 and x > 0 x > 0 ,

x 0 : 1 x = x 2 + 1 x 2 + x = 0 x ( x + 1 ) = 0 \begin{aligned} x \le 0: \quad 1-x & = x^2 + 1 \\ x^2 + x & = 0 \\ x(x+1) & = 0 \end{aligned}

f ( 1 ) = g ( 1 ) = 2 \implies f(-1) = g(-1) = 2 , f ( 0 ) = g ( 0 ) = 1 f(0) = g(0) = 1 , when x < 1 x<-1 , g ( x ) > f ( x ) g(x) > f(x) and when 1 < x < 0 -1 < x < 0 , f ( x ) > g ( x ) f(x) > g(x) .

Similarly,

x > 0 : 1 + x = x 2 + 1 x 2 x = 0 x ( x 1 ) = 0 \begin{aligned} x > 0: \quad 1+x & = x^2 + 1 \\ x^2 - x & = 0 \\ x(x-1) & = 0 \end{aligned}

f ( 0 ) = g ( 0 ) = 1 \implies f(0) = g(0) = 1 , f ( 1 ) = g ( 1 ) = 2 f(1) = g(1) = 2 , when 0 < x < 1 0 < x< 1 , g ( x ) < f ( x ) g(x) < f(x) and when x > 1 x > 1 , f ( x ) < g ( x ) f(x) < g(x) .

Therefore, h ( x ) = { x 2 + 1 if x < 1 1 x if 1 < x < 0 x 2 + 1 if 0 < x < 1 1 + x if x > 1 h(x) = \begin{cases} x^2 + 1 & \text{if } x < -1 \\ 1-x & \text{if } -1 < x < 0 \\ x^2 + 1 & \text{if } 0 < x < 1 \\ 1+x & \text{if } x > 1 \end{cases}

There are three critical points at x = 1 , 0 , 1 x=-1,0,1 .

Since { x = 1 { f ( 1 ) = 1 g ( 1 ) = 2 f ( 1 ) g ( 1 ) Not differentiable x = 0 { f ( 0 ) = 1 g ( 0 ) = 0 f ( 0 ) g ( 0 ) Not differentiable x = 1 { f ( 1 ) = 1 g ( 1 ) = 2 f ( 1 ) g ( 1 ) Not differentiable \begin{cases} x = -1 & \implies \begin{cases} f'(-1) = -1 \\ g'(-1) = -2 \end{cases} & \implies f'(-1) \ne g'(-1) & \text{Not differentiable} \\ x = 0 & \implies \begin{cases} f'(0) = -1 \\ g'(0) = 0 \end{cases} & \implies f'(0) \ne g'(0) & \text{Not differentiable} \\ x = 1 & \implies \begin{cases} f'(1) = 1 \\ g'(1) = 2 \end{cases} & \implies f'(1) \ne g'(1) & \text{Not differentiable} \end{cases}

Therefore, there are 3 \boxed{3} points at which h ( x ) h(x) is not differentiable.

Nice solution . +1

Sabhrant Sachan - 4 years, 10 months ago

Log in to reply

Need help here

A Former Brilliant Member - 4 years, 9 months ago

hey bro, i am really confused can you help me when we find the distances of image from lenses we use 1/v-1/u=1/f and in the five case we study in the refracting curved surface we use a diff. formula plz help. tell me the difff. between spherical curved surfaces and lenses.

A Former Brilliant Member - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...