What is this?

2 ( 10 0 ) + 2 2 2 ( 10 1 ) + 2 3 3 ( 10 2 ) + 2 4 4 ( 10 3 ) + + 2 11 11 ( 10 10 ) = ? 2\dbinom{10}{0}+\dfrac{2^2}{2}\dbinom{10}{1}+\dfrac{2^3}{3}\dbinom{10}{2}+\dfrac{2^4}{4}\dbinom{10}{3}+\cdots+\dfrac{2^{11}}{11}\dbinom{10}{10} =\, ?

Notation : ( M N ) \dbinom MN denotes the binomial coefficient , ( M N ) = M ! N ! ( M N ) ! \binom MN = \dfrac{M!}{N!(M-N)!} .


Check Out the set Binomial Thm. !
3 11 2 11 \frac{3^{11}-2}{11} 3 11 1 11 \frac{3^{11}-1}{11} 2 12 11 \frac{2^{12}}{11} 2 12 1 11 \frac{2^{12}-1}{11} 3 11 11 \frac{3^{11}}{11} None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 16, 2016

Relevant wiki: JEE Binomial Theorem

we have ( 1 + x ) 10 = ( 10 0 ) + ( 10 1 ) x + ( 10 2 ) x 2 + ( 10 3 ) x 3 + + ( 10 10 ) x 10 (1+x)^{10}=\dbinom{10}{0}+\dbinom{10}{1}x+\dbinom{10}{2}x^2+\dbinom{10}{3}x^3+\cdots+\dbinom{10}{10}x^{10}

Integrating both sides

0 x ( 1 + x ) 10 d x = 0 x ( ( 10 0 ) + ( 10 1 ) x + ( 10 2 ) x 2 + ( 10 3 ) x 3 + + ( 10 10 ) x 10 ) d x ( 1 + x ) 11 11 ( 1 + 0 ) 11 11 = ( 10 0 ) x + ( 10 1 ) x 2 2 + ( 10 2 ) x 3 3 + ( 10 3 ) x 4 4 + + ( 10 10 ) x 11 11 \displaystyle\int_0^{x}(1+x)^{10}dx=\int_0^{x}(\dbinom{10}{0}+\dbinom{10}{1}x+\dbinom{10}{2}x^2+\dbinom{10}{3}x^3+\cdots+\dbinom{10}{10}x^{10})dx \\ \dfrac{(1+x)^{11}}{11}-\dfrac{(1+0)^{11}}{11}=\dbinom{10}{0}x+\dbinom{10}{1}\dfrac{x^2}{2}+\dbinom{10}{2}\dfrac{x^3}{3}+\dbinom{10}{3}\dfrac{x^4}{4}+\cdots+\dbinom{10}{10}\dfrac{x^{11}}{11}

Put x 2 3 11 1 11 = 2 ( 10 0 ) + 2 2 2 ( 10 1 ) + 2 3 3 ( 10 2 ) + 2 4 4 ( 10 3 ) + + 2 11 11 ( 10 10 ) \text{ Put }x\rightarrow 2 \\ \quad \\ \boxed{\dfrac{3^{11}-1}{11}}=2\dbinom{10}{0}+\dfrac{2^2}{2}\dbinom{10}{1}+\dfrac{2^3}{3}\dbinom{10}{2}+\dfrac{2^4}{4}\dbinom{10}{3}+\cdots+\dfrac{2^{11}}{11}\dbinom{10}{10}

Same solution (+1) :)

Aditya Sky - 5 years ago

Log in to reply

Thanks Aditya 😃

Sabhrant Sachan - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...