Thank you Fresnel!

Calculus Level 4

0 sin ( x 2 ) ( x + 4 x ) 2 d x = a π + b c π \int _{ 0 }^{ \infty }{ \sin { ( { x }^{ 2 } ) } { \left( \frac { x+4 }{ x } \right) }^{ 2 }dx } =a\pi +\sqrt { \frac { b }{ c } \pi }

If the above is true and b b and c c are coprime positive integers, find a + b + c a+b+c .


The answer is 1099.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 21, 2016

I = 0 sin ( x 2 ) ( x + 4 x ) 2 d x = 0 sin ( x 2 ) ( 1 + 4 x ) 2 d x = 0 sin ( x 2 ) ( 1 + 8 x + 16 x 2 ) d x = 0 sin ( x 2 ) d x + 8 0 sin ( x 2 ) x d x + 16 0 sin ( x 2 ) x 2 d x = I 1 + 8 I 2 + 16 I 3 \begin{aligned} I & = \int_0^\infty \sin(x^2) \left(\frac {x+4}x\right)^2 dx \\ & = \int_0^\infty \sin(x^2) \left(1+\frac 4x\right)^2 dx \\ & = \int_0^\infty \sin(x^2) \left(1+ \frac 8x + \frac {16}{x^2} \right) dx \\ & = \int_0^\infty \sin(x^2) \ dx + 8 \int_0^\infty \frac {\sin(x^2)}x \ dx + 16 \int_0^\infty \frac {\sin(x^2)}{x^2} \ dx \\ & = I_1 + 8I_2 + 16I_3 \end{aligned}

I 1 = 0 sin ( x 2 ) d x = S ( ) = π 8 S ( x ) is Fresnel integral. \begin{aligned} I_1 & = \int_0^{\color{#3D99F6}\infty} \sin(x^2) \ dx = {\color{#3D99F6}S(\infty)} = \sqrt{\frac \pi 8} & \small \color{#3D99F6} S(x) \text{ is Fresnel integral.} \end{aligned}

I 2 = 0 sin ( x 2 ) x d x Let u = x 2 d u = 2 x d x = 1 2 0 sin u u d u = 1 2 S i ( ) = π 4 S i ( x ) is sine integral. \begin{aligned} I_2 & = \int_0^\infty \frac {\sin(x^2)}x \ dx & \small \color{#3D99F6} \text{Let }u = x^2 \implies du = 2x \ dx \\ & = \frac 12 \int_0^ {\color{#3D99F6}\infty} \frac {\sin u}u \ du \\ & = \frac 12 \color{#3D99F6}Si (\infty) = \frac \pi 4 & \small \color{#3D99F6} Si(x) \text{ is sine integral.} \end{aligned}

I 3 = 0 sin ( x 2 ) x 2 d x By integration by parts. = sin ( x 2 ) x 0 + 0 2 x cos ( x 2 ) x d x = 0 + 0 + 2 0 cos ( x 2 ) d x See note: lim x 0 sin ( x 2 ) x = 0 = 2 S ( ) = π 2 C ( x ) is Fresnel integral. \begin{aligned} I_3 & = \int_0^\infty \frac {\sin(x^2)}{x^2} \ dx & \small \color{#3D99F6} \text{By integration by parts.} \\ & = -\frac {\sin(x^2)}x \ \bigg|_0^\infty + \int_0^\infty \frac {2x\cos (x^2)}x\ dx \\ & = -0+{\color{#3D99F6}0} + 2 \int_0^{\color{#D61F06}\infty} \cos (x^2) \ dx & \small \color{#3D99F6} \text{See note: }\lim_{x \to 0} \frac {\sin (x^2)}x = 0 \\ & = 2 {\color{#3D99F6}S(\infty)} = \sqrt{\frac \pi 2} & \small \color{#3D99F6} C(x) \text{ is Fresnel integral.} \end{aligned}

Therefore, I = I 1 + 8 I 2 + 16 I 3 = π 8 + 8 × π 4 + 16 π 2 = 2 π + 1089 8 π \displaystyle I = I_1 + 8I_2 + 16I_3 = \sqrt{\frac \pi 8} + 8 \times \frac \pi 4 + 16 \sqrt{\frac \pi 2} = 2\pi + \sqrt{\frac {1089}8 \pi}

a + b + c = 2 + 1089 + 8 = 1099 \implies a+b+c = 2+1089+8 = \boxed{1099}


Note:

L = lim x 0 sin ( x 2 ) x A 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 0 2 x cos ( x 2 ) 1 Differentiate up and down w.r.t. x . = 0 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin (x^2)}x & \small \color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {2x \cos (x^2)}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x. \\ & = 0 \end{aligned}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...