That doesn't look integrable

Calculus Level 4

n = 1 1 e n 0 ( log x e ( log x e ) 2 ) d x = A log B ( C D ) \sum_{n=1}^\infty\int_{\frac{1}{e^n}}^0\left(\log_xe-(\log_xe)^2\right)\text{ }dx=A-\log_B(C-D)

Given that A A and D D are positive integers, find A + B C + D A+\dfrac{B}{C}+D .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Shekhawat
Apr 22, 2015

First Note This is integration of type : ( f ( x ) + x f ( x ) ) d x = x f ( x ) + c f ( x ) = 1 ln x \int { \left( f\left( x \right) +xf^{ ' }\left( x \right) \right) dx } =xf\left( x \right) +c\\ f(x)=\cfrac { 1 }{ \ln { x } }

Now put limits and now our task is to find : g ( 1 / e ) = ? g(1/e)=? where : g ( x ) = 1 n x n n g ( x ) = 1 n x n 1 = 1 + x + x 2 + . . . . . g ( x ) = 1 1 x g ( x ) = ln ( 1 x ) g ( 1 e ) = 1 ln ( e 1 ) \displaystyle{g(x)=\sum _{ 1 }^{ n }{ \cfrac { x^{ n } }{ n } } \\ g^{ ' }\left( x \right) =\sum _{ 1 }^{ n }{ x^{ n-1 } } =1+x+{ x }^{ 2 }+.....\\ g^{ ' }\left( x \right) =\cfrac { 1 }{ 1-x } \\ g(x)=-\ln { (1-x) } \\ \boxed { g(\cfrac { 1 }{ e } )=1-\ln { (e-1) } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...