That escalated quickly!

Find the number of positive integers n n , for which

2 n + 12 n + 159187 n 2^n+{12}^n+{159187}^n

is a square.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adarsh Kumar
Nov 28, 2014

2 n + 1 2 n + 15918 7 n = k 2 = o d d l e t u s t a k e t h a t n 2 t h e n 2 n + 1 2 n + 15918 7 n i s d i v i s i b l e b y 4 b u t 4 d o e s n t d i v i d e \ a n y o d d i n t e g e r 0 < n < 2 n = 1 i s t h e o n l y s o l u t i o n w h i c h c a n b e t r u e . P u t t i n g 1 i n p l a c e o f n g i v e s t h a t t h e e x p r e s s i o n i s 39 9 2 . T h u s , n = 1 i s t h e o n l y s o l u t i o n . 2^{n}+12^{n}+159187^{n}=k^{2}=odd\\ let\ us\ take\ that\ n\geq2\\ then\ 2^{n}+12^{n}+159187^{n}\ is\ divisible\ by\ 4\ but\ 4\ doesn't\ divide\\\ any\ odd\ integer\\ \Rightarrow0<n<2\\ \Rightarrow\ n=1\ is\ the\ only\ solution\ which\ can\ be\ true.Putting\ 1\ in\\ place\ of\ n\ gives\ that\ the\ expression\ is\ 399^{2}.\\ Thus,n=1\ is\ the\ only\ solution.

How is 2^n+12^n+159187^n divisible by 4?

Matthew Feng - 6 years, 5 months ago
Bogdan Simeonov
May 31, 2014

This is kind of a troll problem :D.You can substitute 159187 with any number, congruent to 3 mod 4 and 1 mod 3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...