That Is Close 3

Calculus Level 5

The sequence of real numbers { x 1 , x 2 , x 3 , } \{ x_1, x_2, x_3, \ldots \} satisfies { lim n ( x 2 n + x 2 n + 1 ) = 315 lim n ( x 2 n + x 2 n 1 ) = 2003 \begin{cases} \displaystyle \lim_{n \to \infty}(x_{2n} + x_{2n+1}) = 315 \\ \displaystyle \lim_{n \to \infty}(x_{2n} + x_{2n-1}) = 2003 \end{cases} Evaluate lim n x 2 n x 2 n + 1 \displaystyle \lim_{n \to \infty}\dfrac{x_{2n}}{{x_{2n+1}}} .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the given limits, we also find lim n ( x 2 n + 2 x 2 n ) = 1688 lim n ( x 2 n + 1 x 2 n 1 ) = 1688 \lim_{n\to \infty}(x_{2n+2}-x_{2n})=1688\\ \lim_{n\to \infty}(x_{2n+1}-x_{2n-1})=-1688 Thus, for any ϵ > 0 \epsilon>0 , for sufficiently large n n , we have x 2 n + 2 = x 2 n + 1688 + a n x 2 n + 3 = x 2 n + 1 1688 + b n x_{2n+2}=x_{2n}+1688+a_n \\ x_{2n+3}=x_{2n+1}-1688+b_n where the real sequences { a n } , { b n } \{a_n\},\{b_n\} are such that, for sufficiently large n n , a n , b n < ϵ |a_n|,|b_n|<\epsilon . Roughly speaking, the sequences { x 2 n } \{x_{2n}\} and { x 2 n + 1 } \{x_{2n+1}\} are more or less "asymptotically" arithmetic progressions, with common differences 1688 , 1688 1688,-1688 respectively. Thus, starting from a sufficiently large number N N , we see that n N \forall n\ge N , x 2 n + 1 x 2 n + 3 = x 2 N + 1688 ( n N ) + k = N n a k x 2 N + 1 1688 ( n N ) + k = N n b k \frac{x_{2n+1}}{x_{2n+3}}=\frac{x_{2N}+1688(n-N)+\sum_{k=N}^n a_k}{x_{2N+1}-1688(n-N)+\sum_{k=N}^n b_k} So that, as n n\to \infty lim sup n x 2 n + 1 x 2 n + 3 lim n x 2 N / ( n N ) + 1688 + ϵ x 2 N + 1 / ( n N ) 1688 ϵ = 1688 + ϵ 1688 ϵ = 1 \lim\sup_{n}\frac{x_{2n+1}}{x_{2n+3}}\le \lim_{n\to \infty}\frac{x_{2N}/(n-N)+1688+\epsilon}{x_{2N+1}/(n-N)-1688-\epsilon}=\frac{1688+\epsilon}{-1688-\epsilon}=-1 and lim inf n x 2 n + 1 x 2 n + 3 lim n x 2 N / ( n N ) + 1688 ϵ x 2 N + 1 / ( n N ) 1688 + ϵ = 1688 ϵ 1688 + ϵ = 1 \lim\inf_{n}\frac{x_{2n+1}}{x_{2n+3}}\ge \lim_{n\to \infty}\frac{x_{2N}/(n-N)+1688-\epsilon}{x_{2N+1}/(n-N)-1688+\epsilon}=\frac{1688-\epsilon}{-1688+\epsilon}=-1 Thus the limit is 1 \boxed{-1} .

Great work , very good solution

Ujjwal Mani Tripathi - 4 years, 10 months ago

Log in to reply

Thanks! :)

Samrat Mukhopadhyay - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...