That Is Close 4

Calculus Level 5

lim t 0 [ 0 1 ( b x + a ( 1 x ) ) t d x ] 1 / t \large \lim_{t\to 0} \left[\int_0^{1} (bx + a(1-x))^{t} dx\right]^{1/t}

For 0 < a < b 0 < a < b , the limit above can be expressed as e p 1 ( b b a a ) p 2 b a \large e^{-p_1} \left(b^{b}a^{-a}\right)^{\frac{p_2}{b-a}} where p 1 p_1 and p 2 p_2 are constants. Find p 1 + p 2 p_1 + p_2 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: L'Hopital's Rule - Problem Solving

I = 0 1 ( b x + a ( 1 x ) ) t d x = 0 1 ( ( b a ) x + a ) t d x Let u = ( b a ) x + a , d u = ( b a ) d x = a b u t b a d u = b t + 1 a t + 1 ( b a ) ( t + 1 ) \begin{aligned} I & = \int_0^1 (bx+a(1-x))^t dx \\ & = \int_0^1 ((b-a)x+a)^t dx & \small {\color{#3D99F6}\text{Let }u = (b-a)x+a, \ du = (b-a) \ dx} \\ & = \int_a^b \frac{u^t}{b-a} du \\ & = \frac {b^{t+1}-a^{t+1}}{(b-a)(t+1)} \end{aligned}

L = lim t 0 [ 0 1 ( b x + a ( 1 x ) ) t d x ] 1 / t = lim t 0 [ b t + 1 a t + 1 ( b a ) ( t + 1 ) ] 1 / t = lim t 0 exp ( 1 t ln [ b t + 1 a t + 1 ( b a ) ( t + 1 ) ] ) exp ( x ) = e x = exp ( lim t 1 ln [ b t a t ( b a ) t ] t 1 ) A 0/0 cases, L’H o ˆ pital’s rule applies. = exp ( lim t 1 ( b a ) t b t a t ( ( b t ln b a t ln a ) ( b a ) t ( b t a t ) ( b a ) ( ( b a ) t ) 2 ) 1 ) Differentiate up and down. = exp ( b ln b a ln a b a 1 ) = exp ( ln b b b a ln a a b a 1 ) = e 1 ( b b a a ) 1 b a \begin{aligned} L & = \lim_{t \to 0} \left[\int_0^{1} (bx + a(1-x))^{t} dx\right]^{1/t} \\ & = \lim_{t \to 0} \left[\frac {b^{t+1}-a^{t+1}}{(b-a)(t+1)} \right]^{1/t} \\ & = \lim_{t \to 0} \exp \left( \frac 1t \ln \left[\frac {b^{t+1}-a^{t+1}}{(b-a)(t+1)} \right] \right) & \small {\color{#3D99F6} \exp(x) = e^x} \\ & = \exp \left( \lim_{t \to \color{#D61F06}1} \frac {\ln \left[\frac {b^{\color{#D61F06}t}-a^{\color{#D61F06}t}}{(b-a)\color{#D61F06}t} \right]}{\color{#D61F06}t-1} \right) & \small {\color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.}} \\ & = \exp \left( \lim_{t \to 1} \frac {\frac {(b-a)t}{b^t-a^t} \left(\frac {(b^t\ln b - a^t \ln a)(b-a)t - (b^t-a^t)(b-a)}{((b-a)t)^2}\right)}1 \right) & \small {\color{#3D99F6} \text{Differentiate up and down.}} \\ & = \exp \left(\frac {b\ln b - a\ln a}{b-a} - 1 \right) \\ & = \exp \left(\ln b^{\frac b{b-a}} - \ln a^{\frac a{b-a}} - 1 \right) \\ & = e^{-1}\left(b^b a^{-a} \right)^{\frac 1{b-a}} \end{aligned}

p 1 + p 2 = 1 + 1 = 2 \implies p_1 + p_2 = 1+1 = \boxed{2}


Alternative Solution

L = lim t 0 [ b t + 1 a t + 1 ( b a ) ( t + 1 ) ] 1 / t = lim t 1 [ b t a t ( b a ) t ] 1 t 1 The limit is of the form 1 = exp ( lim t 1 1 t 1 [ b t a t ( b a ) t 1 ] ) A 0/0 cases, L’H o ˆ pital’s rule applies. = exp ( lim t 1 1 1 [ ( b t ln b a t ln a ) ( b a ) t ( b t a t ) ( b a ) ( ( b a ) t ) 2 ] ) Differentiate up and down. = exp ( b ln b a ln a b a 1 ) = exp ( ln b b b a ln a a b a 1 ) = e 1 ( b b a a ) 1 b a \begin{aligned} L & = \lim_{t \to 0} \left[\frac {b^{t+1}-a^{t+1}}{(b-a)(t+1)} \right]^{1/t} \\ & = \lim_{t \to 1} \left[\frac {\color{#3D99F6}b^t-a^t}{\color{#D61F06}(b-a)t} \right]^{\color{#20A900}\frac 1{t-1}} & \small {\color{#3D99F6}\text{The limit is of the form }1^\infty} \\ & = \exp \left( \lim_{t \to 1} {\color{#20A900}\frac 1{t-1}} \left[\frac {\color{#3D99F6}b^t-a^t}{\color{#D61F06}(b-a)t} - 1 \right] \right) & \small {\color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.}} \\ & = \exp \left( \lim_{t \to 1} \frac 11 \left[\frac {(b^t\ln b-a^t\ln a)(b-a)t-(b^t-a^t)(b-a)}{((b-a)t)^2} \right] \right) & \small {\color{#3D99F6} \text{Differentiate up and down.}} \\ & = \exp \left(\frac {b\ln b - a\ln a}{b-a} - 1 \right) \\ & = \exp \left(\ln b^{\frac b{b-a}} - \ln a^{\frac a{b-a}} - 1 \right) \\ & = e^{-1}\left(b^b a^{-a} \right)^{\frac 1{b-a}} \end{aligned}

p 1 + p 2 = 1 + 1 = 2 \implies p_1 + p_2 = 1+1 = \boxed{2}

an amazing solution :)

Ujjwal Mani Tripathi - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...