That Is Close 5

1 5 23 + 2 3 23 \large {15^{23}} + {23^{23}}

If the remainder of the sum above is divided by 57 57 is R R , then what is the remainder when R R is divided by 5 5 ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
Dec 19, 2016

Let S = 1 5 23 + 2 3 23 S=15^{23} +23^{23}

We individually find the remainder after dividing by 3 3 and 19 19 . because 57 = 19 × 3 57=19 \times 3

1 5 23 = 3 23 . 5 23 0 ( m o d 3 ) 15^{23} = 3^{23}.5^{23} \equiv 0 \pmod 3

2 3 23 = ( 24 1 ) 23 ( 1 ) 23 1 2 ( m o d 3 ) 23^{23}=(24-1)^{23} \equiv (-1)^{23} \equiv -1 \equiv 2 \pmod 3 .So 1 5 23 + 2 3 23 2 ( m o d 3 ) 15^{23} + 23^{23} \equiv 2 \pmod 3

Now 1 5 23 + 2 3 23 = ( 19 4 ) 23 + ( 19 + 4 ) 23 = 19 k 1 + ( 4 ) 23 + 19 k 2 + 4 23 = 19 k 0 ( m o d 19 ) 15^{23} + 23^{23} =(19-4)^{23} + (19+4)^{23} =19k_1 +(-4)^{23} + 19k_2 +4^{23}=19k \equiv 0 \pmod{19}

So S 2 ( m o d 3 ) S 0 ( m o d 19 ) S \equiv 2 \pmod{3} \\ S \equiv 0 \pmod{19} .

The smallest number that satisfies the above condition is R = 38 R=38

So 38 3 ( m o d 5 ) 38 \equiv 3 \pmod{5}

Chew-Seong Cheong
Dec 19, 2016

We need to find R = 1 5 23 + 2 3 23 mod 57 R = 15^{23}+23^{23} \text{ mod }57 and then R mod 5 R \text{ mod }5 .

Since 15 and 57 are not coprime integers, we have to consider the prime factors of 57, 3 and 19, separately.

1 5 23 0 (mod 3) \begin{aligned} 15^{23} & \equiv 0 \text{ (mod 3)} \end{aligned}

1 5 23 3 n (mod 57) where n is a positive integer. \begin{aligned} \implies 15^{23} & \equiv 3{\color{#3D99F6}n} \text{ (mod 57)} & \small \color{#3D99F6} \text{where }n \text{ is a positive integer.} \end{aligned}

1 5 23 1 5 23 mod ϕ ( 19 ) (mod 19) Since gcd ( 15 , 19 ) = 1 , Euler’s theorem applies. 1 5 23 mod 18 (mod 19) Euler’s totient function ϕ ( 19 ) = 18 1 5 5 (mod 19) ( 19 4 ) 5 (mod 19) 4 5 (mod 19) ( 16 ) ( 16 ) 4 (mod 19) ( 3 ) ( 3 ) 4 (mod 19) 36 (mod 19) 2 (mod 19) \begin{aligned} 15^{23} & \equiv 15^{23 \text{ mod }\color{#3D99F6}\phi(19)} \text{ (mod 19)} & \small \color{#3D99F6} \text{Since }\gcd(15,19) = 1 \text{, Euler's theorem applies.} \\ & \equiv 15^{23 \text{ mod }\color{#3D99F6}18} \text{ (mod 19)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(19) = 18 \\ & \equiv 15^5 \text{ (mod 19)} \\ & \equiv (19-4)^5 \text{ (mod 19)} \\ & \equiv -4^5 \text{ (mod 19)} \\ & \equiv -(16)(16)4 \text{ (mod 19)} \\ & \equiv -(-3)(-3)4 \text{ (mod 19)} \\ & \equiv -36 \text{ (mod 19)} \\ & \equiv 2 \text{ (mod 19)} \end{aligned}

3 n 2 (mod 19) 21 2 (mod 19) n = 7 1 5 23 21 (mod 57) \begin{aligned} \implies 3n & \equiv 2 \text{ (mod 19)} \\ 21 & \equiv 2 \text{ (mod 19)} \\ \implies n & = 7 \\ \implies 15^{23} & \equiv 21 \text{ (mod 57)} \end{aligned}

Although 23 and 57 are coprime integers, ϕ ( 57 ) = 36 > 23 \phi(57) = 36 > 23 is unsuitable to solve for 2 3 23 mod 57 23^{23} \text{ mod }57 . We again consider the prime factors, 3 and 19 separately, which are both coprime integers with 23 and Euler's theorem applies.

2 3 23 2 3 23 mod ϕ ( 3 ) (mod 3) 2 3 23 mod 2 (mod 3) 2 3 1 (mod 3) 2 (mod 3) \begin{aligned} 23^{23} & \equiv 23^{23 \text{ mod }\color{#3D99F6}\phi(3)} \text{ (mod 3)} \\ & \equiv 23^{23 \text{ mod }2} \text{ (mod 3)} \\ & \equiv 23^1 \text{ (mod 3)} \\ & \equiv 2 \text{ (mod 3)} \end{aligned}

2 3 23 3 p + 2 (mod 57) where p is a positive integer. \begin{aligned} \implies 23^{23} & \equiv 3{\color{#3D99F6}p} + 2 \text{ (mod 57)} & \small \color{#3D99F6} \text{where }p \text{ is a positive integer.} \end{aligned}

2 3 23 2 3 23 mod ϕ ( 19 ) (mod 19) 2 3 23 mod 18 (mod 19) 2 3 5 (mod 19) ( 19 + 4 ) 5 (mod 19) 4 5 (mod 19) ( 16 ) ( 16 ) ( 4 ) (mod 19) ( 3 ) ( 3 ) ( 4 ) (mod 19) 36 (mod 19) 17 (mod 19) \begin{aligned} 23^{23} & \equiv 23^{23 \text{ mod }\color{#3D99F6}\phi(19)} \text{ (mod 19)} \\ & \equiv 23^{23 \text{ mod }18} \text{ (mod 19)} \\ & \equiv 23^5 \text{ (mod 19)} \\ & \equiv (19+4)^5 \text{ (mod 19)} \\ & \equiv 4^5 \text{ (mod 19)} \\ & \equiv (16)(16)(4) \text{ (mod 19)} \\ & \equiv (-3)(-3)(4) \text{ (mod 19)} \\ & \equiv 36 \text{ (mod 19)} \\ & \equiv 17 \text{ (mod 19)} \end{aligned}

3 p + 2 17 (mod 19) 3 p 15 (mod 19) p 5 (mod 19) 24 5 (mod 19) p = 24 3 ( 24 ) + 2 74 (mod 57) 17 (mod 57) \begin{aligned} \implies 3p + 2 & \equiv 17 \text{ (mod 19)} \\ 3p & \equiv 15 \text{ (mod 19)} \\ p & \equiv 5 \text{ (mod 19)} \\ 24 & \equiv 5 \text{ (mod 19)} \\ \implies p = 24 \\ \implies 3(24) + 2 & \equiv 74 \text{ (mod 57)} \\ & \equiv 17 \text{ (mod 57)} \end{aligned}

Therefore, 1 5 23 + 2 3 23 21 + 17 38 (mod 57) 15^{23}+23^{23} \equiv 21 + 17 \equiv 38 \text{ (mod 57)} R = 38 \implies R = 38 and R mod 5 = 38 mod 5 = 3 R \text{ mod 5} = 38 \text{ mod 5} = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...