That Is Close 7

Algebra Level 4

p = 1 32 ( 3 p + 2 ) ( q = 1 10 ( sin 2 q π 11 i cos 2 q π 11 ) ) 4 = ? \large \sum_{p =1}^{32} (3p +2) \left( \sum_{q =1}^{10} \left (\sin \frac{2q \pi}{11} - i \cos \frac{2q \pi}{11} \right ) \right)^{4} =\, ?

Clarification: i = 1 i=\sqrt{-1} .


The answer is 1648.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Dec 28, 2016

e i ( 2 q π 11 ) = cos 2 q π 11 i sin 2 q π 11 e^{-i\left(\frac{2q\pi}{11}\right)} = \cos{\dfrac{2q\pi}{11}}-i\sin{\dfrac{2q\pi}{11}}

For my convenience let k = 2 π 11 k = -\dfrac{2\pi}{11}

S = q = 1 10 e i q k = e i k + e 2 i k + e 3 i k + + e 10 i k S = e i k e 11 i k 1 e i k \begin{aligned} S & = \displaystyle \sum_{q=1}^{10} e^{iqk} \\ & = e^{ik}+e^{2ik}+e^{3ik}+\cdots+e^{10ik} \\ S & = \dfrac{e^{ik}-e^{11ik}}{1-e^{ik}} \end{aligned}

e 11 i k = e 2 π i = cos ( 2 π ) = 1 S = e i k 1 1 e i k = 1 S 4 = 1 e^{11ik} = e^{-2\pi i } = \cos{(-2\pi)} = 1 \\ S = \dfrac{e^{ik}-1}{1-e^{ik}} = -1 \\ S^4 = 1

p = 1 32 3 p + 2 = 3 16 33 + 2 32 = 1648 \displaystyle \sum_{p=1}^{32} 3p+2 = 3\cdot 16\cdot 33+2\cdot 32 = \boxed{1648}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...